Simulation of Access, Coverage, and Orbital Decay for an Optical Micro-Satellite for Colombia
HTML Full Text
PDF
XML

Keywords

Satellite Orbits
Coverage
Revisit Times
Orbit Lifespan
Simulation
Decay
Microsatellite

How to Cite

Simulation of Access, Coverage, and Orbital Decay for an Optical Micro-Satellite for Colombia. (2025). Ingenieria Y Universidad, 29. https://doi.org/10.11144/Javeriana.iued29.saco
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

The selection of the operational orbit is a critical component for the success of satellite missions, as it must meet specific user requirements, payload constraints, and communication needs. This paper comprehensively analyzes the criteria and parameters used to determine the best orbit for satellite missions, focusing on design variables derived from mission requirements and technical constraints. Several fundamental aspects are evaluated, such as coverage of areas of interest, access times to ground stations, revisit times, and satellite lifespan in orbit through simulations of orbital scenarios, the results show that orbits with inclinations of 16° provide an optimal balance between coverage and revisit times, maximizing operational efficiency over Colombian territory. Satellite constellations are also analyzed, highlighting specific combinations that improve coverage and access times, furthermore, the analysis of orbital decay and lifespan in orbit confirms that the selected orbits comply with international collision risk mitigation standards. This article offers a guide for orbit selection in satellite missions, emphasizing in a Low-Earth Orbit mission, ensuring operational benefits and risks minimization.

HTML Full Text
PDF
XML

[1] Wertz, James R., Spacecraft Attitude Determination and Control, Boston, MA: Kluwer Academic Publishers.

[2] Kirkpatrick, D., Space mission analysis and design (Vol. 8), J. R. Wertz, W. J. Larson, & D. Klungle (Eds.), 1999.

[3] Rincón-Urbina, S. R. ., Cárdenas-García, J. M. ., Pirazán-Villanueva , K. N. ., Acero-Niño , I. F. ., Hurtado-Velasco , R. H. ., & Cortés-García , E. D., “Diseño crítico del nanosatélite de la misión FACSAT-2 para la observación y análisis del territo-rio colombiano.,” Revista UIS Ingenierías, vol. 22(3), p. 69–86, 2023.

[4] J. M. Cárdenas, M. Castaño,, ““FACSAT II y FACSAT III programa de desarrollo espacial,”,” Fuerza Aérea Colombiana Revista Aeronáutica, vol. vol.306, p. 11–13, 2022.

[5] Wertz, J. R., Everett, D. F., & Puschell, J. J., Space mission engineering: the new SMAD, 2011.

[6] Blanchard, B. S., & Fabrycky, W. J., Systems Engineering and Analysis, Pearson, 2010.

[7] G. Elachi & J. W. Long, Radar Remote Sensing of Land Surface, Hoboken, NJ: Wiley-Interscience, 2006, pp. 185-190.

[8] W. J. Campbell, Introduction to Remote Sensing, Nueva York, NY: Guilford Press, 2011.

[9] S. R. Chaudhry & M. A. G. Khairi, “Access Time Optimization for Satellite Communication Systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4440-4450, 2015.

[10] Taini, G., Pietropaolo, A., & Notarantonio, A., “Criteria and trade-offs for LEO orbit design,” IEEE Aer-ospace Conference, pp. 1-11, 2008.

[11] Sneeuw, N., Flury, J., & Rummel, R., “Science requirements on future missions and simulated mission scenarios,” Future Satellite Gravimetry and Earth Dynamics, pp. 113-142, 2005.

[12] Han, P., Guo, Y., Wang, P., Li, C., & Pedrycz, W., “Optimal orbit design and mission scheduling for sun-synchronous orbit on-orbit refueling system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 4968-4983, 2023.

[13] European Space Agency (ESA), ESA Space Debris Mitigation Compliance Verification Guidelines, París, Francia: European Space Agency (ESA), 2020.

[14] Cohen, R., Boncyk, W., Brutocao, J., & Beveridge, I., “Model-based trade space exploration for near-Earth space missions,” 2005 IEEE Aerospace Conference, pp. 4258-4267, 2005.

[15] European Cooperation for Space Standardization, Space Debris Mitigation Compliance Verification Guidelines (ESSB-HB-U-002-19), issue 1, Noordwijk, Netherlands: ECSS, 2015.

[16] European Space Agency, Debris risk assessment and mitigation analysis (DRAMA) software user manual, Darmstadt, Germany: ESA, 2022.

[17] European Cooperation for Space Standardization (ECSS), ECSS-U-AS-10C: Space Debris Mitigation, Noordwijk, Países Bajos: European Cooperation for Space Standardization (ECSS), 2018.

[18] European Space Agency (ESA), Space Debris Mitigation Guidelines, París, Francia: ESA, 2009.

[19] M. J. K. Burchell & J. C. S. Lo, “Orbital Lifetime Requirements for Spacecraft,” Acta Astronautica, vol. 99, pp. 60-67, 2014.

[20] J. Meneses, D. Salek, S. Muñoz, M. Molina, P. Zárate, G. Sáenz and E. Cortés, Diseño y simulación preliminar de órbitas para la misión sateltial del FACSAT-3: Accesos, Cobertura y Decaimiento Orbital, Santiago de Cali: EMAVI-GRUAC-SEINV, 2024.

[21] Wertz, J. R., Mission geometry; orbit and constellation design and management, Space technology library, 2001.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Ernesto David Cortés García, Germán Darío Saenz Hernández, Lorena Paola Cárdenas Espinosa, Santiago Muñoz Giraldo, Dib Ziyari Salek Chaves, Rubén Darío Guerrero Sánchez