Gestión eficiente de energía eléctrica domiciliaria con base en los incentivos de la ley colombiana 1715 de 2014
PDF (Inglés)

Palabras clave

eficiencia energética
generación distribuida
Ley colombiana 1715
cadena de valor energética
infraestructura inteligente

Cómo citar

Gestión eficiente de energía eléctrica domiciliaria con base en los incentivos de la ley colombiana 1715 de 2014. (2016). Ingenieria Y Universidad, 20(2), 221-238. https://doi.org/10.11144/Javeriana.iyu20-2.ehem
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Este artículo propone un modelo de gestión de energía eléctrica domiciliaria (GEDE), en el marco de la Ley colombiana 1715 de 2014. Se plantean diferentes modos de operación que se pueden aplicar en el prototipo sugerido de la red de energía domiciliaria. El sistema es de topología variable, de manera que se alimenta por fuentes de generación distribuida o por el sistema interconectado, y se relacionan con un sistema de control. Se analizaron tres escenarios: 1) generación distribuida en una hora pico, donde el usuario activa el sistema manualmente; 2) cargas prioritarias, donde el usuario decide qué conectar en las horas pico, y el servicio de generación distribuida se reserva para estas horas (este escenario es el semiautomático), y 3) sistema autónomo, donde se ahorra energía por medio de infraestructura inteligente que controla el uso de electrodomésticos e iluminación. Se prevé aportar nuevos esquemas de consumo de energía mediante dispositivos que aporten a la eficiencia energética empleando técnicas de monitoreo, control y supervisión de la energía, unidas a la generación distribuida. En esta propuesta, los usuarios domiciliarios tendrán participación en la toma de decisiones energéticas relacionadas con el consumo o generación, por medio de los incentivos ofrecidos en la Ley 1715.

PDF (Inglés)

[1] Ley 1715/2014, de mayo 13, por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. Diario Oficial 49.150.
[2] N. S. Wade, P. C. Taylor, P. D. Lang, and P. R. Jones, “Evaluating the benefits of an electrical energy storage system in a future smart grid,” Energ. Policy, vol. 38, no. 11, pp. 7180-7188, 2010.
[3] H. Chen, T. Ngoc Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291-312, 2009.
[4] S. M. Amin and B. F. Wollenberg, “Toward a smard grid: power delivery for the 21st century,” IEEE Power Energy Mag, vol. 3, pp. 34-41, 2005.
[5] J. Crispim, J. Braz, R. Castro, and J. Esteves, “Smart grids in the EU with smart regulation: Experiences from the UK, Italy and Portugal,” Utilities Policy, vol. 21, pp. 85-93, 2014.
[6] D. Villa, C. Martín, F. Villanueva, F. Moya y J. López, “A dynamically reconfigurable architecture for smart grids,” IEEE Consum. Electron. Trans., vol. 57, pp. 411-419, 2011.
[7] H. Jinsoo, C. Chang Sig, and L. Llwoo Lee, “More efficient home energy management system based on ZigBee communication and infrared remote controls,” IEEE Consum. Electron., vol. 57, pp. 85-89, 2011.
[8] A. M. Vega Escobar, F. Santamaría y E. Trujillo, “Modeling for home electric energy management: A review,” Renew. Sust. Energ. Rev., vol. 52, pp. 948-959, 2015.
[9] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” Electr. Power Energ. Syst., vol. 63, pp. 473-484, 2014.
[10] B. JinSung, J. Boungiu, N. Junyoung, K. Youngil, and PP. Sehyun, “An intelligent self-adjusting sensor for smart home services based on ZigBee communications,” IEEE Consum. Electron., vol. 58, pp. 794-802, 2012.
[11] B. S. Powers and B. Margossian, “Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data,” IEEE Comput. Appl. Power, vol. 4, no. 2, pp. 42-47, 1991.
[12] Z. C. Younghun, K. T. Schmid, and M. B. Srivastava, “Viridiscope: design and implementation of a fine grained power monitoring system for homes,” in UbiComp, pp. 245-254, 2009.
[13] S. Meiling, T. Steinbach, M. Duge, and T. C. Schmidt, “Consumer-oriented integration of smart homes and smart grids: a case for multicast-enabled home gateways?,” IEEE Third Int. Conf. Consumer Electron., Berlin, 2013.
[14] P. Chavali, P. Yang, and A. Nehorai, “A distributed algorithm of appliance scheduling for home energy management system,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 282-290, 2014.
[15] B. Frankston, “(Not) in control of your home [bits versus electrons],” IEEE Consum. Electron. Mag., vol. 2, pp. 56-58, 2013.
[16] A. M. Vega Escobar, F. Santamaría y E. Trujillo Rivas, “Internet de los objetos empleando Arduino para la gestión eléctrica domiciliaria,” Revista de la EAN, vol. 77, pp. 20-40, 2014.
[17] A. H. Kazmi, M. J. O’Grady, and G. M. O’Hare, “Energy management in the smart home,” in 2013 IEEE 10th Int. Conf. Ubiquitous Intell. Comput., Ireland, 2013.
[18] N. K. Suryadevara, S. C. Mukhopadhyay, S. D. Tebje Kelly, and S. P. Singh Gill, “WSN-based smart sensors and actuator for power management in intelligent buildings,” IEEE/ASME Trans., pp. 1-8, 2014.
[19] H. Morsali, S. M. Shekarabi, K. Ardekani, H. Khayami, A. R. Fereidunian, M. Ghassemian, and H. Lesani, “Smart plugs for building energy management systems,” in Smart Grids (ICSG), 2nd Iranian, 2012.
[20] M. L. Marceau and R. Zmeureanu, “Nonintrusive load disaggregation computer program to estimate the energy consumption of major end uses in residential buildings,” Energ. Convers. Manage., vol. 41, pp. 1389-1403, 2000.
[21] D. Shahgoshtasbi and M. M. Jamshidi, “A new intelligent neuro-fuzzy paradigm for energy-efficient homes,” IEEE Syst. J., vol. 8, no. 2, pp. 664-673, 2014.
[22] A. Chehri and H. T. Mouftah, “Service-oriented architecture for Smart building energy management,” de IEEE ICC 2013-Selected Areas in Communications Symposium, Budapest, 2013.
[23] R. Boynuegri, B. Yagcitekin, M. Bays, A. Karakas, and M. Uzunoglu, “Energy management algorithm for smart home with renewable energy sources,” in 4th Int. Conf. Power Eng., Energ. Electr. Drives, Istanbul, 2013.
[24] A. M. Vega Escobar, F. Santamaría y E. Rivas Trujillo, “Propuesta para elaborar un modelo de gestión para redes eléctricas domiciliarias: Aproximación conceptual,” in Sixth Int. Symp. Energ. Technol. Innovat. Forum, Gurabo – Puerto Rico, 2014.
[25] M. Ali, A. Alahäivälä, F. Malik, M. Humayun, A. Safdarian, and M. Lehtonen, “A market-oriented hierarchical framework for residential demand response,” Electr. Power Energ. Syst., vol. 69, pp. 257-263, 2015.
[26] M. R. Marqueda Zamora and L. A. Sánchez Viveros, “Curvas de demanda de energia electrica en el sector domestico de dos regiones de México,” Instituto Investigaciones Eléctricas de México, pp. 173-180, 2011.
[27] M. Á. Cerezo Moreno, “Gestión activa de la demanda de energía eléctrica,” Universidad Carlos III, Madrid, 2010.
[28] C. Goebel, “On the business value of ICT-controlled plug-in electric vehicle charging in California,” Energ. Policy, vol. 53, pp. 1-10, 2013.

Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.

Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.

El autor o los autores conservarán los derechos morales y patrimoniales del artículo.