Resumen
La adolescencia es una etapa del ciclo vital caracterizada por cambios cerebrales y por el desarrollo progresivo de las funciones ejecutivas. Asimismo, es una etapa de riesgo para desarrollar problemas de salud mental, especialmente si no se cuenta con un repertorio ejecutivo que permita afrontar adecuadamente las demandas del entorno. En este contexto, se propone una herramienta de uso clínico basada en el cúmulo de conocimientos sobre la electroencefalografía en estado de reposo (EEG-ER) y su relación con las funciones ejecutivas. Usando EEG-ER se obtienen tres índices de conectividad funcional: (1) asimetría frontal alfa; (2) radio entre ondas lentas y rápidas; y (3) acoplamiento en fase de amplitud. Estos índices representan cambios en la organización funcional del cerebro adolescente y su correlación con procesos psicológicos. En conclusión, se presenta evidencia del EEG-ER como complemento diagnóstico y como medida de la efectividad de intervenciones clínicas. Además, se propone su uso como herramienta para detectar patrones de actividad que anteceden a procesos psicopatológicos.
Alahmadi, N., Evdokimov, S. A., Kropotov, Y. J., Müller, A. M., & Jäncke, L. (2016). Different resting state EEG features in children from Switzerland and Saudi Arabia. Frontiers in Human Neuroscience, 10, 559. https://doi.org/10.3389/fnhum.2016.00559
Ambrosini, E., & Vallesi, A. (2016). Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control. NeuroImage, 124, 843-857. https://doi.org/10.1016/j.neuroimage.2015.09.035
Amico, F., Frye, R. E., Shannon, S., & Rondeau, S. (2023). Resting state EEG correlates of suicide ideation and suicide attempt. Journal of Personalized Medicine, 13(6), 884. https://doi.org/10.3390/jpm13060884
Anderson, A. J., & Perone, S. (2018). Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain and Cognition, 126, 40-52. https://doi.org/10.1016/j.bandc.2018.08.001
Arns, M., Conners, C. K., & Kraemer, H. C. (2012). A decade of EEG theta/beta ratio research in ADHD. Journal of Attention Disorders, 17(5), 374-383. https://doi.org/10.1177/1087054712460087
Auerbach, R. P., Stewart, J. G., Stanton, C. H., Mueller, E. M., & Pizzagalli, D. A. (2015). Emotion-processing biases and resting EEG activity in depressed adolescents. Depression and Anxiety, 32(9), 693-701. https://doi.org/10.1002/da.22381
Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., Moore, T. M., Shinohara, R. T., Kahn, A. E., Vandekar, S. N., Rupert, P. E., Quarmley, M., Cook, P. A., Elliott, M. A., Ruparel, K., Gur, R. E., Gur, R. C., Bassett, D. S., & Satterthwaite, T. D. (2017). Modular segregation of structural brain networks supports the development of executive function in youth. Current Biology, 27(11), 1561-1572.e8. https://doi.org/10.1016/j.cub.2017.04.051
Blakemore, S.-J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3-4), 296-312. https://doi.org/10.1111/j.1469-7610.2006.01611.x
Briesemeister, B. B., Tamm, S., Heine, A., & Jacobs, A. M. (2013). Approach the good, withdraw from the bad—A review on frontal alpha asymmetry measures in applied psychological research. Psychology, 4(3), 261-267. https://doi.org/10.4236/psych.2013.43a039
Brzezicka, A., Kamiński, J., Kamińska, O. K., Wołyńczyk-Gmaj, D., & Sedek, G. (2017). Frontal EEG alpha band asymmetry as a predictor of reasoning deficiency in depressed people. Cognition and Emotion, 31(5), 868-878. https://doi.org/10.1080/02699931.2016.1170669
Candelaria-Cook, F. T., Solis, I., Schendel, M. E., Wang, Y. P., Wilson, T. W., Calhoun, V. D., & Stephen, J. M. (2022). Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: A longitudinal reliability study. Cerebral Cortex, 32(23), 5404-5419. https://doi.org/10.1093/cercor/bhac023
Cave, A. E., & Barry, R. J. (2021). Sex differences in resting EEG in healthy young adults. International Journal of Psychophysiology, 161, 35-43. https://doi.org/10.1016/j.ijpsycho.2021.01.008
Chung, Y. G., Jeon, Y., Kim, R. G., Cho, A., Kim, H., Hwang, H., Choi, J., & Kim, K. J. (2022). Variations of resting-state EEG-based functional networks in brain maturation from early childhood to adolescence. Journal of Clinical Neurology, 18(5), 581-593. https://doi.org/10.3988/jcn.2022.18.5.581
Çiçek, M., & Nalçac, E. (2001). Interhemispheric asymmetry of EEG alpha activity at rest and during the Wisconsin Card Sorting Test: Relations with performance. Biological Psychology, 58(1), 75-88. https://doi.org/10.1016/s0301-0511(01)00103-x
Clark, A. P., Bontemps, A. P., Houser, R. A., & Salekin, R. T. (2022). Psychopathy and resting state EEG theta/beta oscillations in adolescent offenders. Journal of Psychopathology and Behavioral Assessment, 44(1), 64-80. https://doi.org/10.1007/s10862-021-09915-x
Clarke, A. R., Barry, R. J., Karamacoska, D., & Johnstone, S. J. (2019). The EEG theta/beta ratio: A marker of arousal or cognitive processing capacity? Applied Psychophysiology Biofeedback, 44(2), 123-129. https://doi.org/10.1007/S10484-018-09428-6
Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Executive functions. In M. D’Esposito (Ed.), Handbook of Clinical Neurology (1st ed., Vol. 163, pp. 197-219). Elsevier. https://doi.org/10.1016/B978-0-12-804281-6.00011-2
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Das, A., de los Angeles, C., & Menon, V. (2022). Electrophysiological foundations of the human default-mode network revealed by intracranial-EEG recordings during resting-state and cognition. NeuroImage, 250, 118927. https://doi.org/10.1016/j.neuroimage.2022.118927
De Pascalis, V., Vecchio, A., & Cirillo, G. (2020). Resting anxiety increases EEG delta-beta correlation: Relationships with the Reinforcement Sensitivity Theory personality traits. Personality and Individual Differences, 156, 109796. https://doi.org/10.1016/j.paid.2019.109796
Feldmann, L., Piechaczek, C. E., Grünewald, B. D., Pehl, V., Bartling, J., Frey, M., Schulte-Körne, G., & Greimel, E. (2018). Resting frontal EEG asymmetry in adolescents with major depression: Impact of disease state and comorbid anxiety disorder. Clinical Neurophysiology, 129(12), 2577-2585. https://doi.org/10.1016/j.clinph.2018.09.028
Forbes, O., Schwenn, P. E., Wu, P. P. Y., Santos-Fernandez, E., Xie, H. B., Lagopoulos, J., McLoughlin, L. T., Sacks, D. D., Mengersen, K., & Hermens, D. F. (2022). EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents. Biological Psychology, 173, 108403. https://doi.org/10.1016/j.biopsycho.2022.108403
Foulkes, L., & Blakemore, S. J. (2016). Is there heightened sensitivity to social reward in adolescence? Current Opinion in Neurobiology, 40, 81-85. https://doi.org/10.1016/j.conb.2016.06.016
Fuhrmann, D., Knoll, L. J., & Blakemore, S. L. (2015). Adolescence as a sensitive period of brain development. Trends in Cognitive Sciences, 19(10), 558-566.
Galiana-Simal, A., Vecina-navarro, P., Sánchez-ruiz, P., & Vela-romero, M. (2020). Electroencefalografía cuantitativa como herramienta para el diagnóstico y seguimiento del paciente con trastorno por déficit de atención / hiperactividad. Revista de Neurología, 70(6), 197-205. https://doi.org/10.33588/rn.7006.2019311.
Galicia-Alvarado, M., Flores-Ávalos, B., Sánchez-Quezada, A., Yáñez-Suárez, Ó., & Brust-Carmona, H. (2016). Correlación del funcionamiento ejecutivo y la potencia absoluta del EEG en niños. Salud Mental, 39(5), 267-274. https://doi.org/10.17711/SM.0185-3325.2016.031
Ganesan, K., & Steinbeis, N. (2022). Development and plasticity of executive functions: A value-based account. Current Opinion in Psychology, 44, 215-219. https://doi.org/10.1016/j.copsyc.2021.09.012
Grünewald, B. D., Greimel, E., Trinkl, M., Bartling, J., Großheinrich, N., & Schulte-Körne, G. (2018). Resting frontal EEG asymmetry patterns in adolescents with and without major depression. Biological Psychology, 132, 212-216. https://doi.org/10.1016/j.biopsycho.2017.12.002
Herrera-Morales, W. V., Reyes-López, J. V., Tuz-Castellanos, K. N. H., Ortegón-Abud, D., Ramírez-Lugo, L., Santiago-Rodríguez, E., & Núñez-Jaramillo, L. (2023). Variations in theta/beta ratio and cognitive performance in subpopulations of subjects with ADHD symptoms: Towards neuropsychological profiling for patient subgrouping. Journal of Personalized Medicine, 13(9), 1361. https://doi.org/10.3390/jpm13091361
Hevia-Orozco, J. C., & Sanz-Martin, A. (2018). EEG characteristics of adolescents raised in institutional environments and their relation to psychopathological symptoms. Journal of Behavioral and Brain Science, 8(10), 519-537. https://doi.org/10.4236/jbbs.2018.810032
Howsley, P., & Levita, L. (2018). Developmental changes in the cortical sources of spontaneous alpha throughout adolescence. International Journal of Psychophysiology, 133, 91-101. https://doi.org/10.1016/j.ijpsycho.2018.08.003
Hu, J., Zhou, D., Ma, L., Zhao, L., He, X., Peng, X., Chen, R., Chen, W., Jiang, Z., Ran, L., Liu, X., Tao, W., Yuan, K., & Wang, W. (2023). A resting-state electroencephalographic microstates study in depressed adolescents with non-suicidal self-injury. Journal of Psychiatric Research, 165, 264-272. https://doi.org/10.1016/j.jpsychires.2023.07.020
Hu, L., Tan, C., Xu, J., Qiao, R., Hu, Y., & Tian, Y. (2024). Decoding emotion with phase-amplitude fusion features of EEG functional connectivity network. Neural Networks, 172, 106148. https://doi.org/10.1016/j.neunet.2024.106148
Jones, J. S., & Astle, D. E. (2022). Segregation and integration of the functional connectome in neurodevelopmentally “at risk” children. Developmental Science, 25(3), e13209. https://doi.org/10.1111/desc.13209
Karamacoska, D., Barry, R. J., Steiner, G. Z., Coleman, E. P., & Wilson, E. J. (2018). Intrinsic EEG and task-related changes in EEG affect Go/NoGo task performance. International Journal of Psychophysiology, 125, 17-28.
Knyazev, G. G. (2012). EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience & Biobehavioral Reviews, 36(1), 677-695. https://doi.org/10.1016/j.neubiorev.2011.10.002
Kobayashi, R., Honda, T., Hashimoto, J., Kashihara, S., Iwasa, Y., Yamamoto, K., Zhu, J., Kawahara, T., Anno, M., Nakagawa, R., Haraguchi, Y., & Nakao, T. (2020). Resting-state theta/beta ratio is associated with distraction but not with reappraisal. Biological Psychology, 155, 107942. https://doi.org/10.1016/j.biopsycho.2020.107942
Lanfranco, R. C., Dos, F., Sousa, S., Wessel, P. M., Rivera-Rei, Á., Bekinschtein, T. A., Lucero, B., Canales-Johnson, A., & Huepe, D. (2023). Slow-wave brain connectivity predicts executive functioning and group belonging in socially vulnerable individuals [Preprint]. bioRxiv. https://doi.org/10.1101/2023.07.19.549808
Li, Q., Xia, M., Zeng, D., Xu, Y., Sun, L., Liang, X., Xu, Z., Zhao, T., Liao, X., Yuan, H., Liu, Y., Huo, R., Li, S., & He, Y. (2024). Development of segregation and integration of functional connectomes during the first 1,000 days. Cell Reports, 43(5), 114168. https://doi.org/10.1016/j.celrep.2024.114168
Lum, J. A. G., Clark, G. M., Bigelow, F. J., & Enticott, P. G. (2022). Resting state electroencephalography (EEG) correlates with children’s language skills: Evidence from sentence repetition. Brain and Language, 230, 105137. https://doi.org/10.1016/J.BANDL.2022.105137
Machinskaya, R. I., Kurgansky, A. V., & Lomakin, D. I. (2019). Age-related trends in functional organization of cortical parts of regulatory brain systems in adolescents: an analysis of resting-state networks in the EEG source space. Human Physiology, 45(5), 461-473. https://doi.org/10.1134/s0362119719050098
Marek, S., Tervo-Clemmens, B., Klein, N., Foran, W., Ghuman, A. S., & Luna, B. (2018). Adolescent development of cortical oscillations: Power, phase, and support of cognitive maturation. PLOS Biology, 16(11), e2004188. https://doi.org/10.1371/journal.pbio.2004188
Meghdadi, A. H., Karic, M. S., McConnell, M., Rupp, G., Richard, C., Hamilton, J., Salat, D., & Berka, C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PLOS ONE, 16(2), e0244180. https://doi.org/10.1371/journal.pone.0244180
Meiers, G., Nooner, K., De Bellis, M. D., Debnath, R., & Tang, A. (2020). Alpha EEG asymmetry, childhood maltreatment, and problem behaviors: A pilot home-based study. Child Abuse & Neglect, 101, 104358. https://doi.org/10.1016/j.chiabu.2020.104358
Meng, L., & Xiang, J. (2016). Frequency specific patterns of resting-state networks development from childhood to adolescence: A magnetoencephalography study. Brain and Development, 38(10), 893-902. https://doi.org/10.1016/j.braindev.2016.05.004
Meza-Cervera, T., Kim-Spoon, J., & Bell, M. A. (2023). Adolescent depressive symptoms: the role of late childhood frontal EEG asymmetry, executive function, and adolescent cognitive reappraisal. Research on Child and Adolescent Psychopathology, 51(2), 193-207. https://doi.org/10.1007/S10802-022-00983-5/FIGURES/4
Müller, U., & Kerns, K. (2015). The development of executive function. In L. Liben & U. Müller (Eds.), Handbook of child psychology and developmental science (7th ed., Vol. 2, pp. 571-623). Wiley . https://doi.org/10.1002/9781118963418.childpsy214
Najafabadi, A., & Bagh, K. (2023). Resting-state EEG classification of children and adolescents diagnosed with major depression disorder using convolutional neural network. [Preprint]. OSF Preprints. https://doi.org/10.31234/osf.io/8j9e6
Neo, W. S., Foti, D., Keehn, B., & Kelleher, B. (2023). Resting-state EEG power differences in autism spectrum disorder: A systematic review and meta-analysis. Translational Psychiatry, 13(1), 1-14. https://doi.org/10.1038/s41398-023-02681-2
Nettinga, J., Naseem, S., Yakobi, O., Willoughby, T., & Danckert, J. (2023). Exploring EEG resting state as a function of boredom proneness in pre-adolescents and adolescents. Experimental Brain Research, 242(1), 123-135. https://doi.org/10.1007/s00221-023-06733-3
Neuhaus, E., Lowry, S. J., Santhosh, M., Kresse, A., Edwards, L. A., Keller, J., Libsack, E. J., Kang, V. Y., Naples, A., Jack, A., Jeste, S., McPartland, J. C., Aylward, E., Bernier, R., Bookheimer, S., Dapretto, M., Van Horn, J. D., Pelphrey, K., & Webb, S. J. (2021). Resting state EEG in youth with ASD: Age, sex, and relation to phenotype. Journal of Neurodevelopmental Disorders, 13(1), 1-15. https://doi.org/10.1186/s11689-021-09390-1
Neuhaus, E., Santhosh, M., Kresse, A., Aylward, E., Bernier, R., Bookheimer, S., Jeste, S., Jack, A., McPartland, J. C., Naples, A., Van Horn, J. D., Pelphrey, K., & Webb, S. J. (2023). Frontal EEG alpha asymmetry in youth with autism: Sex differences and social-emotional correlates. Autism Research, 16(12), 2364-2377. https://doi.org/10.1002/aur.3032
Ott, L. R., Penhale, S. H., Taylor, B. K., Lew, B. J., Wang, Y. P., Calhoun, V. D., Stephen, J. M., & Wilson, T. W. (2021). Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. NeuroImage, 244, 118552. https://doi.org/10.1016/j.neuroimage.2021.118552
Popov, T., Tröndle, M., Baranczuk-Turska, Z., Pfeiffer, C., Haufe, S., & Langer, N. (2023). Test-retest reliability of resting-state EEG in young and older adults. Psychophysiology, 60(7), e14268. https://doi.org/10.1111/psyp.14268
Pössel, P., Lo, H., Fritz, A., & Seemann, S. (2008). A longitudinal study of cortical EEG activity in adolescents. Biological Psychology, 78(2), 173-178. https://doi.org/10.1016/j.biopsycho.2008.02.004
Putman, P. (2011). Resting state EEG delta-beta coherence in relation to anxiety, behavioral inhibition, and selective attentional processing of threatening stimuli. International Journal of Psychophysiology, 80(1), 63-68. https://doi.org/10.1016/j.ijpsycho.2011.01.011
Putman, P., van Peer, J., Maimari, I., & van der Werff, S. (2010). EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biological Psychology, 83(2), 73-78. https://doi.org/10.1016/j.biopsycho.2009.10.008
Putman, P., Verkuil, B., Arias-Garcia, E., Pantazi, I., & Van Schie, C. (2014). EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective and Behavioral Neuroscience, 14(2), 782-791. https://doi.org/10.3758/s13415-013-0238-7
Rommel, A. S., James, S. N., McLoughlin, G., Brandeis, D., Banaschewski, T., Asherson, P., & Kuntsi, J. (2017). Altered EEG spectral power during rest and cognitive performance: A comparison of preterm-born adolescents to adolescents with ADHD. European Child & Adolescent Psychiatry, 26(12), 1511. https://doi.org/10.1007/s00787-017-1010-2
Sacks, D. D., Schwenn, P. E., Boyes, A., Mills, L., Driver, C., Gatt, J. M., Lagopoulos, J., & Hermens, D. F. (2023). Longitudinal associations between resting-state, interregional theta-beta phase-amplitude coupling, psychological distress, and wellbeing in 12–15-year-old adolescents. Cerebral Cortex, 33(12), 8066-8074. https://doi.org/10.1093/cercor/bhad099
Sacks, D. D., Schwenn, P. E., De Regt, T., Driver, C., McLoughlin, L. T., Lagopoulos, J., & Hermens, D. F. (2023). Early adolescent psychological distress and cognition, correlates of resting-state EEG, interregional phase-amplitude coupling. International Journal of Psychophysiology, 183, 130-137. https://doi.org/10.1016/j.ijpsycho.2022.11.012
Sacks, D. D., Schwenn, P. E., McLoughlin, L. T., Lagopoulos, J., & Hermens, D. F. (2021). Phase-amplitude coupling, mental health and cognition: Implications for adolescence. Frontiers in Human Neuroscience, 15, 622313. https://doi.org/10.3389/fnhum.2021.622313
Sargent, K., Chavez-Baldini, U. Y., Master, S. L., Verweij, K. J. H., Lok, A., Sutterland, A. L., Vulink, N. C., Denys, D., Smit, D. J. A., & Nieman, D. H. (2021). Resting-state brain oscillations predict cognitive function in psychiatric disorders: A transdiagnostic machine learning approach. NeuroImage: Clinical, 30, 102617. https://doi.org/10.1016/j.nicl.2021.102617
Schutter, D. J. L. G., & Knyazev, G. G. (2012). Cross-frequency coupling of brain oscillations in studying motivation and emotion. Motivation and Emotion, 36(1), 46-54. https://doi.org/10.1007/s11031-011-9237-6
Schwartzmann, B., Quilty, L. C., Dhami, P., Uher, R., Allen, T. A., Kloiber, S., Lam, R. W., Frey, B. N., Milev, R., Müller, D. J., Soares, C. N., Foster, J. A., Rotzinger, S., Kennedy, S. H., & Farzan, F. (2023). Resting-state EEG delta and alpha power predict response to cognitive behavioral therapy in depression: A Canadian Biomarker Integration Network for Depression study. Scientific Reports 13(1), 1-12. https://doi.org/10.1038/s41598-023-35179-4
Shim, M., Im, C. H., Kim, Y. W., & Lee, S. H. (2018). Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study. NeuroImage: Clinical, 19, 1000-1007. https://doi.org/10.1016/j.nicl.2018.06.012
Smith, E. E., Reznik, S. J., Stewart, J. L., & Allen, J. J. B. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology 111, 98-114. https://doi.org/10.1016/j.ijpsycho.2016.11.005
Tabiee, M., Azhdarloo, A., & Azhdarloo, M. (2023). Comparing executive functions in children with attention deficit hyperactivity disorder with or without reading disability: A resting-state EEG study. Brain and Behavior, 13(4), e2951. https://doi.org/10.1002/brb3.2951
Tomarken, A. J., Dichter, G. S., Garber, J., & Simien, C. (2004). Resting frontal brain activity: Linkages to maternal depression and socio-economic status among adolescents. Biological Psychology, 67(1-2), 77-102. https://doi.org/10.1016/j.biopsycho.2004.03.011
Tortella-Feliu, M., Morillas-romero, A., Balle, M., Llabrés, J., Bornas, X., & Putman, P. (2014). Spontaneous EEG activity and spontaneous emotion regulation. International Journal of Psychophysiology, 94(3), 365–372. https://doi.org/10.1016/j.ijpsycho.2014.09.003
van der Vinne, N., Vollebregt, M. A., van Putten, M. J. A. M., & Arns, M. (2017). Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage: Clinical, 16, 79-87. https://doi.org/10.1016/j.nicl.2017.07.006
van Son, D., Angelidis, A., Hagenaars, M. A., van der Does, W., & Putman, P. (2018). Early and late dot-probe attentional bias to mild and high threat pictures: Relations with EEG theta/beta ratio, self-reported trait attentional control, and trait anxiety. Psychophysiology, 55(12), e13274. https://doi.org/10.1111/psyp.13274
van Son, D., van der Does, W., Band, G. P. H., & Putman, P. (2020). EEG theta/beta ratio neurofeedback training in healthy females. Applied Psychophysiology Biofeedback, 45(3), 195-210. https://doi.org/10.1007/s10484-020-09472-1
Zelazo, P. D. (2020). Executive function and psychopathology: A neurodevelopmental perspective. Annual Review of Clinical Psychology, 16, 431-454. https://doi.org/10.1146/annurev-clinpsy-072319-024242
Zhang, D. W., Johnstone, S. J., Li, H., Luo, X., & Sun, L. (2023). Comparing the transfer effects of three neurocognitive training protocols in children with attention-deficit/hyperactivity disorder: A single-case experimental design. Behaviour Change, 40(1), 11-29. https://doi.org/10.1017/bec.2021.26
Zhang, D. W., Li, H., Wu, Z., Zhao, Q., Song, Y., Liu, L., Qian, Q., Wang, Y., Roodenrys, S., Johnstone, S. J., De Blasio, F. M., & Sun, L. (2017). Electroencephalogram theta/beta ratio and spectral power correlates of executive functions in children and adolescents With AD/HD. Journal of Attention Disorders, 23(7), 721-732. https://doi.org/10.1177/1087054717718263
Zhang, Y., Wu, W., Toll, R. T., Naparstek, S., Maron-Katz, A., Watts, M., Gordon, J., Jeong, J., Astolfi, L., Shpigel, E., Longwell, P., Sarhadi, K., El-Said, D., Li, Y., Cooper, C., Chin-Fatt, C., Arns, M., Goodkind, M. S., Trivedi, M. H., … Etkin, A. (2020). Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography. Nature Biomedical Engineering, 5(4), 309-323. https://doi.org/10.1038/s41551-020-00614-8

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2025 Diego Armando León Rodríguez, Adriana Marcela Martínez Martínez, Oscar Mauricio Aguilar Mejía