Abstract
This paper presents the theoretical-methodological development and the results of modelling cognitive change and novelty in proportionality problem solving with finite automata, using the Uranus (version 2) software with two problem solvers. We explain how both solvers controlled the relevant variables and solved their problems. For the method, we use a repeated measures case study with a qualitative microgenetic approach, the aforementioned modelling through deterministic finite automata and semi structured interviews. Results show change and novelty upon the analysis of the states generated by the manipulation of variables inherent to the proportionality problems presented to the solvers. State transitions, segment formation, and the resulting pathways are non-lineal, with ascending and descending trajectories and punctual equilibriums in the context of a probabilistic epigenesis.
Adjiage, R. & Pluvinage, F. (2007). An experiment in teaching ratio and proportion. Educational Studies in Mathematics, 65(2), 149-175. https://doi.org/10.1007/s10649-006-9049-x
Bateson, P. (2015). Ethology and human development. En W. Overton & P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 208-243. Wiley. https://doi.org/10.1002/9781118963418.childpsy106
Brandtstädter, J. (1998). Action perspectives on human development. En R. M. Lerner (ed.), Theoretical models of human development, pp. 807-863. Wiley.
Černý, J., Bosanský, B., & An, B. (2020), Finite State Machines Play Extensive-Form Games. EC'20: Proceedings of the 21st ACM Conference on Economics and Computation, Julio, 509-533. https://doi.org/10.1145/3391403.3399517
Cortina, J., Visnovska, J., & Zuniga, C. (2014). Unit fractions in the context of proportionality: supporting students' reasoning about the inverse order relationship. Mathematics Education Research Journal, 26(1), 79-99. https://doi.org/10.1007/s13394-013-0112-5
D'Antoni, L. & Veanes, M. (2021). Automata Modulo Theories. Communications of the ACM, 64(5), 86-95. https://doi.org/10.1145/3419404
De Bot, K. (2017). Complexity theory and dynamic systems theory. En L. Ortega y Z. Han (eds.), Complexity theory and language development: in celebration of Diane Larsen-Freeman. Amsterdam: John Benjamins, pp. 51-58. Universidad de Groningen.
https://doi.org/10.1075/lllt.48.03deb
Escobar, H., Abello, R., & Castaño, J., (2016). Trayectorias de control y covariación de variables como expresión del cambio cognitivo en la solución de un problema. Universitas Psychologica, 15(1), 281-302. https://doi.org/10.11144/Javeriana.upsy15-1.tccv
Escobar, H., Abello, R., & Castaño, J., (2019). Análisis de las representaciones de los cálculos operacionales en la solución de un problema de movimiento uniforme. Escobar, H., Abello, R. y J. (2019). Revista Guillermo De Ockham, 17(2), 9-28.
https://doi.org/10.21500/22563202.4120
Guacaneme, E. (2002). “Una caja vacía, pero invadida de funciones”: una propuesta de innovación en un contexto común. Memoria Cuarto Encuentro Colombiano de matemática educativa. Universidad de los Andes. https://www.academia.edu/5503552/_Una_caja_vac%C3%ADa_pero_invadida_de_funciones_una_propuesta_de_innovaci%C3%B3n_en_un_contexto_com%C3%BAn
Guevara, M. (octubre, 2019). Development, a movement science (Desarrollo, Una ciencia en Movimiento). Development Node. ASCOFAPSI: Contemporary Development Discussions. Cali, Colombia.
Hopcroft, J., Motwani, R. y Ullman, J. (2008). Introducción a la teoría de autómatas, lenguajes, y computación. Pearson Educación, S. A.
Kunnen, S. & van Geert, P. (2012). General characteristics of a dynamic systems approach. En S. Kunnen (ed.), A Dynamic Systems Approach to Adolescent Development, pp. 15-34. Psychology Press. https://doi.org/10.4324/9780203147641-10
Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework. En F. K. Lester Jr. (ed.), Second Handbook of Research on Mathematics Teaching and Learning, pp. 629-668. nctm-Information Age Publishing.
Lawton, C. (1993). Contextual factors affecting errors in proportional reasoning. Journal for Research in Mathematics Education, 24(5), 460-466. https://doi.org/10.2307/749154
Lerner, R. & Damon, W. (2006). Handbook of Child Psychology: Theoretical Model of Human Development. Wiley.
Lewis, H. & Zax, R. (2019). Essential Discrete Mathematics for Computer Science. Princeton University Press.
Lickliter, R. & Honeycutt, S. (2015). Biology, development, and human systems. En W. Overton & P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 162-207. Wiley. https://doi.org/10.1002/9781118963418.childpsy105
Mascolo, M. & Fischer, K. (2015). Dynamic development of thinking, feeling, and acting. En W. Overton y P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 113-161. Wiley. https://doi.org/10.1002/9781118963418.childpsy104
McClelland, M., Geldhof, G., Cameron, C., & Wanless, S. (2015). Development and self-regulation. En W. Overton y P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 523-565. Wiley.
https://doi.org/10.1002/9781118963418.childpsy114
Mistry, J. & Dutta, R. (2015). Human development and culture. En W. Overton y P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 369-406. Wiley. https://doi.org/10.1002/9781118963418.childpsy110
Molenaar, P. & Nesselroade, J. (2015). Systems methods for developmental research. En W. Overton & P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 652-682. Wiley. https://doi.org/10.1002/9781118963418.childpsy117
Munné, F. (2014). Perfecto e Imperfecto: Completo. Estudios sobre la Complejidad. Bogotá: California-edit.
Munné, F. (2015). Conferencias dictadas al Nodo de Desarrollo. Red de Investigadores en Psicología. Universidad de la Sabana, Bogotá. Colombia.
Obando G., Vasco, C. E., & Arboleda, L. C. (2014). Enseñanza y aprendizaje de la razón, la proporción y la proporcionalidad: un estado del arte. Relime, 17(1), 59-81. https://doi.org/10.12802/relime.13.1713
Ojose, B. (2015). Proportional Reasoning and Related Concepts: Analysis of Gaps and Understandings of Middle Grade Students. Universal Journal of Educational Research, 3(2), 104-112. https://doi.org/10.13189/ujer.2015.030206
Ossa, J. (2011). Funcionamiento cognitivo: un inextricable juego de perdidas y ganancias. Acta Colombiana de Psicología, 14(2), 45-55.
Ossa, J. (2013). Matrices de transición y patrones de variabilidad cognitiva. Universitas Psychologica, 12(2), 559-570. https://doi.org/10.11144/Javeriana.UPSY12-2.mtpv
Overton, W. (2015). Processes, relations, and relational-developmental-systems. En W. Overton & P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 9-62. Wiley. https://doi.org/10.1002/9781118963418.childpsy102
Overton, W. & Lerner, R. (2012). Relational developmental systems: Paradigm for developmental science in the post-genomic era. Behavioral and Brain Sciences, 35(5), 375-376. https://doi.org/10.1017/S0140525X12001082
Perone, S. & Simmering, V. (2017). Applications of dynamic systems theory to cognition and development: new frontiers. Advances in child development and behavior, 52, 43-80. https://doi.org/10.1016/bs.acdb.2016.10.002
Puche-Navarro, R. (2008). Érase una vez el desarrollo. En J. Larreamendy-Joerns, R. Puche-Navarro & A. Restrepo (ed.), Claves para pensar el cambio: Ensayos sobre psicología del desarrollo, pp. 30-68. Universidad de los Andes, Centro de Estudios Socioculturales e Internacionales.
Puche-Navarro, R., Cerchiaro, E., & Ossa, J. (2017). Emergencia, cambio, autorregulación y metáforas visuales. En R. Puche-Navaro (comp.), pp. 35-66 El desarrollo cognitivo se reorganiza. Editorial: U. Autónoma de Occidente.
Siegler, R. (1995). How Does Change Occur: A Microgenetic Study of Number Conservation. Cognitive Psychology, 28(3), 225-273. https://doi.org/10.1006/cogp.1995.1006
Siegler, R. & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46(6), 606-620. https://doi.org/10.1037/0003-066X.46.6.606
Steenbeek. H. & Van Geert, P. (2005). A dynamic systems model of dyadic interaction during play of two children. European Journal of Developmental Psychology, 2(2), 105-145. https://doi.org/10.1080/17405620544000020
van Geert, P. (2000). The Dynamics of General Developmental Mechanisms: From Piaget and Vygotsky to Dynamic Systems Models. Current Directions in Psychological Science, 9(2), 64-68. https://doi.org/10.1111/1467-8721.00062
Vergnaud, G. (1988). Multiplicative Structures. En J. Hiebert y M. Behr (eds.), Number concepts and operations in the middle grades, vol. 2, pp. 141-161). Lawrence Erlbaum associates.
Vergnaud, G. (1994). Multiplicative conceptual field: what and why. En G. Harel & J. Confrey (ed.), The development of multiplicative reasoning in the learning of mathematics, pp. 41-59. State University of New York Press.
Wahyuningrum, A. & Suryadi, D. (2017). Epistemological Obstacles on the Topic of Ratio and Proportion among Junior High School Students. Journal of Physics: Conference Series, 895(1), 012066. https://doi.org/10.1088/1742-6596/895/1/012066
Witherington, D. (2015). Dynamic Systems in Developmental Science. En W. Overton & P. Molenaar (eds.), Handbook of Child Psychology and Developmental Science: Theory and Method, pp. 63-112. Wiley. https://doi.org/10.1002/9781118963418.childpsy103

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Hugo Escobar-Melo , Rocio Abello Correa, Jorge Castaño García , Cesar Julio Bustacara-Medina