Publicado dic 18, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Andrea Alejandra Moreno Robalino

José Luis Álvarez Vásquez

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: aunque diariamente se realizan millones de tratamientos de conducto radicular en todo el mundo, aún no se han dilucidado los factores que determinan el número de conductos radiculares principales en un diente. Las variaciones en el número de conductos radiculares en diferentes dientes son de suma importancia en la práctica clínica. Sin embargo, los médicos no conocen los determinantes de tal número, y mucho menos estos determinantes han sido abordados en la literatura, según nuestro conocimiento. Objetivo: Esta revisión narrativa tuvo como objetivo integrar los posibles mecanismos involucrados en la determinación del número de conductos principales en un diente permanente. Métodos: Utilizamos los términos de búsqueda "número de conducto radicular", "morfología del conducto radicular", "morfología dental", "desarrollo radicular" y "formación radicular" para identificar artículos de las bases de datos PubMed y Scopus. Resultados: se obtuvieron 57 artículos y 2 libros. Una base multifactorial es plausible considerando la influencia de los mecanismos antropológicos, demográficos, ambientales, genéticos, epigenéticos, relacionados con el tamaño del diente y el papel fundamental de la vaina radicular epitelial de Hertwig. Las técnicas de imagen de células vivas, los modelos matemáticos, la genética cuantitativa y la fenómica dental podrían proporcionar información reveladora en un futuro próximo. Conclusiones: En general, parece que los posibles mecanismos que determinan el número de conductos principales en un diente tienen una base multifactorial. El papel orquestador de la vaina radicular epitelial de Hertwig parece fundamental, aunque las señales reguladoras específicas que inducen o reprimen sus procesos diafragmáticos siguen sin conocerse. Sin embargo, existe una gran necesidad de estudios moleculares que ayuden a revelar estos y otros posibles mecanismos involucrados.

Keywords

dental anatomy, dentistry, endodontics, Hertwig's epithelial root sheath, root canal morphology, root canal number, root canal system, tooth root development, tooth root formationanatomía dental, desarrollo de la raíz del diente, endodoncia, formación de la raíz del diente, morfología del conducto radicular, número de conductos radiculares, odontología, sistema de conductos radiculares, vaina radicular epitelial de Hertwiganatomia dentária, bainha radicular epitelial de Hertwig, desenvolvimento da raiz dentária, endodontia, formação de raiz dentária, morfologia do canal radicular, número de canais radiculares, odontologia, sistema de canais radiculares

References
1. Martins JNR, Marques D, Silva EJNL, Caramês J, Versiani MA. Prevalence Studies on Root Canal Anatomy Using Cone-beam Computed Tomographic Imaging: A Systematic Review. J Endod. 2019 Apr; 45(4): 372-386.e4. https://dx.doi.org/10.1016/j.joen.2018.12.016
2. Li YH, Bao SJ, Yang XW, Tian XM, Wei B, Zheng YL. Symmetry of root anatomy and root canal morphology in maxillary premolars analyzed using cone-beam computed tomography. Arch Oral Biol. 2018 Oct; 94: 84-92. https://dx.doi.org/10.1016/j.archoralbio.2018.06.020
3. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984 Nov; 58(5): 589-599. https://dx.doi.org/10.1016/0030-4220(84)90085-9
4. Gulabivala K, Aung TH, Alavi A, Ng YL. Root and canal morphology of Burmese mandibular molars. Int Endod J. 2001 Jul; 34(5): 359-370. https://dx.doi.org/10.1046/j.1365-2591.2001.00399.x
5. Sert S, Bayirli GS. Evaluation of the root canal configurations of the mandibular and maxillary permanent teeth by gender in the Turkish population. J Endod. 2004 Jun;30(6): 391-398. https://dx.doi.org/10.1097/00004770-200406000-00004
6. Zhang M, Xie J, Wang YH, Feng Y. Mandibular first premolar with five root canals: a case report. BMC Oral Health. 2020 Sep 10; 20(1): 253. https://dx.doi.org/10.1186/s12903-020-01241-0
7. Gomez F, Brea G, Gomez-Sosa JF. Root canal morphology and variations in mandibular second molars: an in vivo cone-beam computed tomography analysis. BMC Oral Health. 2021 Sep 1; 21(1): 424. https://dx.doi.org/10.1186/s12903-021-01787-7
8. Wolf TG, Stiebritz M, Boemke N, Elsayed I, Paqué F, Wierichs RJ, Briseño-Marroquín B. 3-dimensional Analysis and Literature Review of the Root Canal Morphology and Physiological Foramen Geometry of 125 Mandibular Incisors by Means of Micro-Computed Tomography in a German Population. J Endod. 2020 Feb; 46(2): 184-191. https://dx.doi.org/10.1016/j.joen.2019.11.006
9. Aznar Portoles C, Moinzadeh AT, Shemesh H. A Central Incisor with 4 Independent Root Canals: A Case Report. J Endod. 2015 Nov; 41(11): 1903-1906. https://dx.doi.org/10.1016/j.joen.2015.08.001
10. Zhang W, Tang Y, Liu C, Shen Y, Feng X, Gu Y. Root and root canal variations of the human maxillary and mandibular third molars in a Chinese population: A micro-computed tomographic study. Arch Oral Biol. 2018 Nov; 95: 134-140. https://dx.doi.org/10.1016/j.archoralbio.2018.07.020
11. Perrini N, Versiani MA. Historical Overview of the Studies on Root Canal Anatomy. In: Versiani MA, Basrani B, Sousa-Neto M, editors. The Root Canal Anatomy in Permanent Dentition. Cham: Springer; 2019. p.10. https://dx.doi.org/10.1007/978-3-319-73444-6_1
12. American Association of Endodontists. Healthier Mouth=Healthier You. Tooth Wisdom Infographic. https://newsroom.aae.org/healthier-you/. Accessed April 29, 2022.
13. Wang J, Feng JQ. Signaling Pathways Critical for Tooth Root Formation. J Dent Res. 2017 Oct; 96(11): 1221-1228. https://dx.doi.org/10.1177/0022034517717478
14. Zeichner-David M, Oishi K, Su Z, Zakartchenko V, Chen LS, Arzate H, Bringas P Jr. Role of Hertwig's epithelial root sheath cells in tooth root development. Dev Dyn. 2003 Dec; 228(4): 651-663. https://dx.doi.org/10.1002/dvdy.10404
15. Huang X, Xu X, Bringas P Jr, Hung YP, Chai Y. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development. J Bone Miner Res. 2010 May; 25(5): 1167-178. https://dx.doi.org/10.1359/jbmr.091103
16. Ioannidis K, Lambrianidis T, Beltes P, Besi E, Malliari M. Endodontic management and cone-beam computed tomography evaluation of seven maxillary and mandibular molars with single roots and single canals in a patient. J Endod. 2011 Jan; 37(1): 103-109. https://dx.doi.org/10.1016/j.joen.2010.09.001
17. Kottoor J, Velmurugan N, Surendran S. Endodontic management of a maxillary first molar with eight root canal systems evaluated using cone-beam computed tomography scanning: a case report. J Endod. 2011 May; 37(5): 715-719. https://dx.doi.org/10.1016/j.joen.2011.01.008
18. Arora A, Acharya SR, Sharma P. Endodontic treatment of a mandibular first molar with 8 canals: a case report. Restor Dent Endod. 2015 Feb; 40(1): 75-78. https://dx.doi.org/10.5395/rde.2015.40.1.75
19. Kovacs I. Contribution to the ontogenetic morphology of roots of human teeth. J Dent Res. 1967 Sep-Oct; 46(5): 865-874. https://dx.doi.org/10.1177/00220345670460054201
20. Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009 Dec; 54 Suppl 1(Suppl 1): S3-17. https://dx.doi.org/10.1016/j.archoralbio.2009.09.005
21. Shields ED. Mandibular premolar and second molar root morphological variation in modern humans: What root number can tell us about tooth morphogenesis. Am J Phys Anthropol. 2005 Oct; 128(2): 299-311. https://dx.doi.org/10.1002/ajpa.20110
22. Moore NC, Thackeray JF, Hublin JJ, Skinner MM. Premolar root and canal variation in South African Plio-Pleistocene specimens attributed to Australopithecus africanus and Paranthropus robustus. J Hum Evol. 2016 Apr; 93: 46-62. https://dx.doi.org/10.1016/j.jhevol.2015.12.002
23. Hamon N, Emonet EG, Chaimanee Y, Guy F, Tafforeau P, Jaeger JJ. Analysis of dental root apical morphology: a new method for dietary reconstructions in primates. Anat Rec (Hoboken). 2012 Jun; 295(6): 1017-1026. https://dx.doi.org/10.1002/ar.22482
24. Martins JNR, Marques D, Leal Silva EJN, Caramês J, Mata A, Versiani MA. Influence of Demographic Factors on the Prevalence of a Second Root Canal in Mandibular Anterior Teeth - A Systematic Review and Meta-Analysis of Cross-Sectional Studies Using Cone Beam Computed Tomography. Arch Oral Biol. 2020 Aug; 116: 104749. https://dx.doi.org/10.1016/j.archoralbio.2020.104749
25. Martins JNR, Marques D, Silva EJNL, Caramês J, Mata A, Versiani MA. Second mesiobuccal root canal in maxillary molars-A systematic review and meta-analysis of prevalence studies using cone beam computed tomography. Arch Oral Biol. 2020 May;113: 104589. https://dx.doi.org/10.1016/j.archoralbio.2019.104589
26. Usha G, Muddappa SC, Venkitachalam R, Singh VPP, Rajan RR, Ravi AB. Variations in root canal morphology of permanent incisors and canines among Asian population: A systematic review and meta-analysis. J Oral Biosci. 2021 Dec; 63(4): 337-350. https://dx.doi.org/10.1016/j.job.2021.09.004
27. Candeiro GTM, Monteiro Dodt Teixeira IM, Olimpio Barbosa DA, Vivacqua-Gomes N, Alves FRF. Vertucci's Root Canal Configuration of 14,413 Mandibular Anterior Teeth in a Brazilian Population: A Prevalence Study Using Cone-beam Computed Tomography. J Endod. 2021 Mar; 47(3): 404-408. https://dx.doi.org/10.1016/j.joen.2020.12.001
28. Wolf TG, Kozaczek C, Siegrist M, Betthäuser M, Paqué F, Briseño-Marroquín B. An Ex Vivo Study of Root Canal System Configuration and Morphology of 115 Maxillary First Premolars. J Endod. 2020 Jun; 46(6): 794-800. https://dx.doi.org/10.1016/j.joen.2020.03.001
29. Briseño-Marroquín B, Paqué F, Maier K, Willershausen B, Wolf TG. Root Canal Morphology and Configuration of 179 Maxillary First Molars by Means of Micro-computed Tomography: An Ex Vivo Study. J Endod. 2015 Dec; 41(12): 2008-2013. https://dx.doi.org/10.1016/j.joen.2015.09.007
30. Kupczik K, Hublin JJ. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens. J Hum Evol. 2010 Nov; 59(5): 525-541. https://dx.doi.org/10.1016/j.jhevol.2010.05.009
31. Moore NC, Hublin JJ, Skinner MM. Premolar root and canal variation in extant non-human hominoidea. Am J Phys Anthropol. 2015 Oct; 158(2): 209-226. https://dx.doi.org/10.1002/ajpa.22776
32. Moore NC, Skinner MM, Hublin JJ. Premolar root morphology and metric variation in Pan troglodytes verus. Am J Phys Anthropol. 2013 Apr; 150(4): 632-646. https://dx.doi.org/10.1002/ajpa.22239
33. Wood BA, Abbott SA, Uytterschaut H. Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology. J Anat. 1988 Feb; 156: 107-139
34. Przesmycka A, Jędrychowska-Dańska K, Masłowska A, Witas H, Regulski P, Tomczyk J. Root and root canal diversity in human permanent maxillary first premolars and upper/lower first molars from a 14th-17th and 18th-19th century Radom population. Arch Oral Biol. 2020 Feb; 110: 104603. https://dx.doi.org/10.1016/j.archoralbio.2019.104603
35. Kaifu Y, Kono RT, Sutikna T, Saptomo EW, Jatmiko, Due Awe R. Unique Dental Morphology of Homo floresiensis and Its Evolutionary Implications. PLoS One. 2015 Nov 18; 10(11): e0141614. https://dx.doi.org/10.1371/journal.pone.0141614
36. Bailey SE, Hublin JJ, editors. Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Dordrecht: Springer; 2007.
37. Riga A, Belcastro MG, Moggi-Cecchi J. Environmental stress increases variability in the expression of dental cusps. Am J Phys Anthropol. 2014 Mar; 153(3): 397-407. https://dx.doi.org/10.1002/ajpa.22438
38. Brook AH, Koh KSB, Toh VKL. Influences in a biologically complex adaptive system: Environmental stress affects dental development in a group of Romano–Britons. J Des Nat Ecodynamics. 2016; 11(1): 33-40.
39. Townsend GC, Richards L, Hughes T, Pinkerton S, Schwerdt W. Epigenetic influences may explain dental differences in monozygotic twin pairs. Aust Dent J. 2005 Jun;50(2):95-100. https://dx.doi.org/10.1111/j.1834-7819.2005.tb00347.x
40. Line SR. Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol Dev. 2003 May-Jun;5(3):295-304. https://dx.doi.org/10.1046/j.1525-142x.2003.03036.x
41. Townsend G, Hughes T, Luciano M, Bockmann M, Brook A. Genetic and environmental influences on human dental variation: a critical evaluation of studies involving twins. Arch Oral Biol. 2009 Dec;54 Suppl 1(Suppl 1): S45-51. https://dx.doi.org/10.1016/j.archoralbio.2008.06.009
42. Townsend G, Bockmann M, Hughes T, Brook A. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology. 2012 Jan;100(1):1-9. https://dx.doi.org/10.1007/s10266-011-0052-z
43. Townsend G, Brook A. Genetic, Epigenetic and Environmental Influences on Human Tooth Size, Shape and Number. eLS 2013. https://doi.org/10.1002/9780470015902.a0024858
44. Rutherford SL. From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays. 2000 Dec; 22(12): 1095-1105. https://doi.org/10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A
45. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959 Jun 13; 183(4676): 1654-1655. https://dx.doi.org/10.1038/1831654a0
46. Juuri E, Balic A. The Biology Underlying Abnormalities of Tooth Number in Humans. J Dent Res. 2017 Oct; 96(11): 1248-1256. https://dx.doi.org/10.1177/0022034517720158
47. Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol. 2012 Jul; 57(7): 918-930. https://dx.doi.org/10.1016/j.archoralbio.2012.01.005
48. Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A. 2006 Dec 1; 140(23): 2530-2535. https://dx.doi.org/10.1002/ajmg.a.31360
49. Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol. 2018 Jan; 85: 23-39. https://dx.doi.org/10.1016/j.archoralbio.2017.09.033
50. Li Y, Chen CY, Kaye AM, Wasserman WW. The identification of cis-regulatory elements: A review from a machine learning perspective. Biosystems. 2015 Dec; 138: 6-17. https://dx.doi.org/10.1016/j.biosystems.2015.10.002
51. Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet. 2011 Dec 6; 13(1): 59-69. https://dx.doi.org/10.1038/nrg3095
52. Rhodes CS, Yoshitomi Y, Burbelo PD, Freese NH, Nakamura T; NIDCD/NIDCR Genomics and Computational Biology Core; Chiba Y, Yamada Y. Sp6/Epiprofin is a master regulator in the developing tooth. Biochem Biophys Res Commun. 2021 Dec 3; 581: 89-95. https://dx.doi.org/10.1016/j.bbrc.2021.10.017
53. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003 Mar;33 Suppl:245-54. https://dx.doi.org/10.1038/ng1089
54. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005 May; 15(5): 301-316. https://dx.doi.org/10.1038/sj.cr.7290299
55. Mitsiadis TA, Mucchielli ML, Raffo S, Proust JP, Koopman P, Goridis C. Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. Eur J Oral Sci. 1998 Jan; 106 Suppl 1: https://dx.doi.org/112-116. 10.1111/j.1600-0722.1998.tb02161.x
56. Martin N, Boomsma D, Machin G. A twin-pronged attack on complex traits. Nat Genet. 1997 Dec; 17(4): 387-392. https://dx.doi.org/10.1038/ng1297-387
57. Shimazu Y, Sato K, Aoyagi K, et al. Hertwig´s Epithelial Cells and Multi–root Development of Molars in Mice. J Oral Biosci. 2009; 51(4): 210-217. https://doi.org/10.1016/S1349-0079(09)80006-6
58. Constant DA, Grine FE. A review of taurodontism with new data on indigenous southern African populations. Arch Oral Biol. 2001 Nov; 46(11): 1021-1029. https://dx.doi.org/10.1016/s0003-9969(01)00071-1
59. Hamner JE 3rd, WItkop CJ Jr, Metro PS. Taurodontism; report of a case. Oral Surg Oral Med Oral Pathol. 1964 Sep; 18: 409-418. https://dx.doi.org/10.1016/0030-4220(64)90097-0
60. Townsend G, Richards L, Hughes T. Molar intercuspal dimensions: genetic input to phenotypic variation. J Dent Res. 2003 May; 82(5): 350-3555. https://dx.doi.org/10.1177/154405910308200505
61. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000 Mar 15; 92(1): 19-29. https://dx.doi.org/10.1016/s0925-4773(99)00322-6
62. Sánchez N, González-Ramírez MC, Contreras EG, Ubilla A, Li J, Valencia A, Wilson A, Green JBA, Tucker AS, Gaete M. Balance Between Tooth Size and Tooth Number Is Controlled by Hyaluronan. Front Physiol. 2020 Aug 24; 11: 996. https://dx.doi.org/10.3389/fphys.2020.00996
63. Brook AH, Griffin RC, Townsend G, Levisianos Y, Russell J, Smith RN. Variability and patterning in permanent tooth size of four human ethnic groups. Arch Oral Biol. 2009 Dec; 54 Suppl 1: S79-85. https://dx.doi.org/10.1016/j.archoralbio.2008.12.003
64. Kim TH, Bae CH, Yang S, Park JC, Cho ES. Nfic regulates tooth root patterning and growth. Anat Cell Biol. 2015 Sep; 48(3): 188-194. https://dx.doi.org/10.5115/acb.2015.48.3.188
65. Harada H, Kumakami-Sakano M, Fujiwara N, Otsu K. Live imaging to elucidate cell dynamics in tooth organogenesis and regeneration. J Oral Biosci. 2015; 57: 65-68. https://doi.org/10.1016/j.job.2015.02.005
66. Kumakami-Sakano M, Otsu K, Fujiwara N, Harada H. Regulatory mechanisms of Hertwig׳s epithelial root sheath formation and anomaly correlated with root length. Exp Cell Res. 2014 Jul 15; 325(2): 78-82. https://dx.doi.org/10.1016/j.yexcr.2014.02.005
67. Salazar-Ciudad I, Jernvall J. A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci U S A. 2002 Jun 11; 99(12): 8116-8120. https://dx.doi.org/10.1073/pnas.132069499
68. Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel). 2022 Jun 2; 13(6): 996. https://dx.doi.org/10.3390/genes13060996
69. Yong R, Ranjitkar S, Townsend GC, Smith RN, Evans AR, Hughes TE, Lekkas D, Brook AH. Dental phenomics: advancing genotype to phenotype correlations in craniofacial research. Aust Dent J. 2014 Jun; 59 Suppl 1: 34-47. https://dx.doi.org/10.1111/adj.12156
70. Tsujimoto Y. Forms of Roots and Root Canals in Endodontic Therapy. J Oral Biosci. 2009; 51(4): 218-223. https://doi.org/10.1016/S1349-0079(09)80007-8
Cómo citar
Moreno Robalino, A. A., & Álvarez Vásquez, J. L. (2023). Determinantes del número de conductos principales en un diente: descifrando posibles mecanismos. Universitas Odontologica, 42. https://doi.org/10.11144/Javeriana.uo42.dnmc
Sección
Ciencias Básicas, Biotecnología y Bioinformática

Artículos más leídos del mismo autor/a