##plugins.themes.bootstrap3.article.main##


Emmanuel Gerardo Lasso-Sambony, BSc

Sandra Marcela Ortega-Ponce, BSc

Juan Carlos Corrales-Muñoz, PhD

Abstract

The relationships among users in an online social network helps to build a graph that represents the structure. In turn, the semantic enrichment of connections between users provides a higher level of meaning to these relationships, which is an advantage when modeling the internal behavior of a social network. Several researches argue that the use of ontologies in the modeling of social networks, makes that the inference of information on the relationship between users is not inconsistent. However, several authors do not consider the various types of relationships implicitly present in an online social networking. So, in order to overcome the problems posed, in this article we propose a tool that aims to generate a representation of an online social network taking into account the semantic enrichment and the inference of new relationships between users. The prototype assessment made reveals satisfactory results with respect to the inference of new relationships and the accuracy of the associated recommendation system, in this way, it is possible to get a closer representation to the reality of the existing connections in an online social networking.

##plugins.themes.bootstrap3.article.details##

Keywords

Relationships, enrichment, semantic, inference, networking, social

References
APACHE JENA [documento en línea]. http://jena.apache.org/. [consulta: 14-11-2012]
BOJĀRS, U.; BRESLIN, J. G.; PERISTERAS, V., et al. Interlinking the social web with semantics. Intelligent Systems. IEEE Intelligent Systems. 2008, vol. 23, núm. 3, p. 29-40.
CALDEVILLA DOMÍNGUEZ, D. Las Redes Sociales. Tipología, uso y consumo de las redes 2.0 en la sociedad digital actual. Documentación de las Ciencias de la Información. 2010, vol. 33, p. 45-68.
CARMINATI B.; FERRARI E.; HEATHERLY R., et al. Semantic web-based social network access control. Computers & security. 2011, vol. 30, núm. 2, p. 108-115.
CARTON, L. y WELLMAN, B. Studying on-line social networks. Doing Internet research: Critical issues and methods for examining the Net. 1999, vol. 75.
CELIK, I.; ABEL, F. y HOUBEN, G. J. Learning Semantic Relationships between Entities in Twitter. Web Engineering. 2011, p. 167-181.
DE LA ROSA TROYANO, F.; GONZÁLEZ ABRIL, L.; VELASCO MORENTE, F., et al. Análisis de Redes Sociales mediante Diagramas Estratégicos y Diagramas Estructurales. [documento en línea]. 2005. http://dialnet.unirioja.es/servlet/articulo?codigo=1303332 [consulta: 27-7-2011].
DOYTSHER, Y.; GALON, B. y KANZA, Y. Querying geo-social data by bridging spatial networks and social networks. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks. San José, California. 2010, p. 39-46.
ELGG-OPEN NETWORKING SOCIAL ENGINE [documento en línea]. http://elgg.org/. [consulta: 14-11-2012]
ELLISON, N. B. Social network sites: Definition, history, and scholarship. Journal of Computer -Mediated Communication. 2007, vol. 13, núm. 1, p. 210-230.
ERÉTÉO G.; LIMPENS F.; GANDON F., et al. Semantic Social Network Analysis, a concrete case. Handbook of Research on Methods and Techniques for Studying Virtual Communities: Paradigms and Phenomena. 2010, p. 122-156.
ERÉTÉO, G.; BUFFA, M.; GANDON, F., et al. Analysis of a Real Online Social Network Using Semantic Web Frameworks. The Semantic Web. ISWC. 2009, vol. 5823, p. 180-195.
FORGY, C. L. On the efficient implementation of production systems. Doctoral Dissertation. Carnegie-Mellon University. 1979.
HARARY, F.; NORMAN, R. Z. y CARTWRIGHT, D. Structural models: An introduction to the theory of directed graphs. New York: John Wiley & Sons, 1965.
KIM, H.; DECKER, S. y BRESLIN, J. G. Representing and sharing folksonomies with semantics. Journal of Information Science. 2010, vol. 36, núm. 1, p. 57-72.
KOSSINETS, G. y WATTS, D. J. Empirical Analysis of an Evolving Social Network. Science. 2006, vol. 88, núm. 311, p. 88-90.
LOZARES, C. La teoría de Redes Sociales. Revista de Sociología, Departamento de Sociología, Universidad Autónoma de Barcelona, Belaterra.1996, p. 103-26.
MARTÍN-VICENTE, M. I.; GIL-SOLLA, A.; RAMOS-CABRER, M., et al. Semantic inference of user’s reputation and expertise to improve collaborative recommendations. Expert Systems with Applications. 2012, vol. 39, núm. 9, p. 8248-8258.
MIKA, P. Flink: Semantic web technology for the extraction and analysis of social networks. Web Semantics: Science, Services and Agents on the World Wide Web. 2005, vol. 3, núm. 2, p. 211-223.
MIKA, P. Social networks and the semantic web. Springer-Verlag. New York Inc. 2007. ISN 0387710000.
PALLIS, G.; ZEINALIPOUR-YAZTI, D. and DIKAIAKOS, M. Online Social Networks: Status and Trends. New Directions in Web Data Management 1. 2011, p. 213-234.
RED UNIDAD DE SALUD [documento en línea]. http://esalud.unicauca.edu.co/redunisalud/. [consulta: 14-11-2012]
ROWE, M. Applying Semantic Social Graphs to Disambiguate Identity References. The Semantic Web: Research and Applications. 2009, vol. 5554, p. 461-475.
SCOTT, J.; SAGE KNOKE, D.; YANG, S., et al. Social network analysis (SNA). SAGE Publications Ltd. 2000.
TENZER, S. M.; FERRO, O. y PALACIOS, N. Redes Sociales Virtuales: personas, sociedad y empresa. Cátedra Introducción a la Computación, FCEA. 2009.
WASSERMAN, S. y FAUST, K. Social network analysis: Methods and applications. Cambridge University Press. 1994. vol. 8.
WENNERBERG, P. O. Ontology based knowledge discovery in Social Networks. Final Report, JRC Joint Research Center. Italia. 2005, p. 1-34.
ZHOU, L.; DING, L. y FININ, T. How is the Semantic Web evolving? A dynamic social network perspective. Computers in Human Behavior. 2010, vol. 27, p. 1294-1302
How to Cite
Lasso-Sambony, E., Ortega-Ponce, S., & Corrales-Muñoz, J. (2013). Semantic enrichment and inference of relationships in an online social network. Ingenieria Y Universidad, 17(2), 355-373. https://doi.org/10.11144/Javeriana.iyu17-2.esir
Section
Articles
Most read articles by the same author(s)