Publicado feb 27, 2021



PLUMX
Google Scholar
 
Search GoogleScholar


Soledad Isabel Gómez Ramírez

Margarita Chaves Clavijo

##plugins.themes.bootstrap3.article.details##

Resumen

Los péptidos antimicrobianos son componentes importantes de la defensa natural de muchos organismos vivos contra infecciones microbianas. Estos péptidos se expresan constitutivamente o son inducidos por las bacterias o sus productos. Se encuentran en alta concentración en superficies mucosas dañadas donde su blanco va a ser la membrana celular; se unen a ella, se insertan dentro de ésta y destruyen su integridad al causar la lisis celular. En esta revisión se quiere resaltar la importancia de los péptidos antimicrobianos, su clasificación según su estructura, sus funciones y la capacidad de reacción de los microorganismos ante ellos; también se hace un primer abordaje de los péptidos relacionados con Streptococcus mutans, ya que al conocer su biosíntesis, modo de acción y el papel que desempeñan en el mantenimiento de la salud oral, se podría utilizar este conocimiento para así obtener péptidos sintéticos que ejercieran un control contra la caries dental.

Keywords

antimicrobial peptides, defensins, mutacins, Streptococcus mutans, microbiologypéptidos antimicrobianos, defensinas, mutacinas, Streptococcus mutans, microbiología

References
1. Travis J. Reviving the antibiotic miracle? Science 1994 Apr; 264(5157): 360-2
2. Gabay J. Ubiquitous natural antibiotics. Science 1994 Apr; 264: 373-4
3. Janeway C, Travers P. The humoral immune response. In: Immunobiology: the immune system in health and disease. 3rd ed. Current Biology/ Garland, 1997
4. Martínez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I. The outer membranes of Brucella spp are resistant to bactericidal cationic peptides. Infect Immun 1995 Aug; 63(8): 3054-61
5. Hancock R, Scott M. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 2000 Aug; 97(16): 8856-61
6. Hoffman JA, Kafatos FC, Janeway Jr CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999 May; 284: 1313- 17
7. Hoffmann JA, Hetru CH. Insect defensins: inducible antibacterial peptides. Immunol Today 1992; 13(10): 411-15
8. Boman H. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995; 13: 61-92
9. Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH. Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci USA 1997 Aug; 94: 8686-90
10. Scott MG, Yang H, Hancock REW. Biological properties of structurally related á-helical cationic antimicrobial peptides. Infect Immun 1999 Apr; 67(4): 2005-9
11. Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 1996 Dec; 64(12): 4922-27
12. Hancock R. Peptide antibiotics. The Lancet 1997 Feb; 349: 418-22 13. REW Hancock Laboratory. Cationic antimicrobial peptides. Canada: 2002 Aug
13. http://www.embdr.ubc.ca/bobh/peptide
14. Fernández RC, Weiss AA. Susceptibilities of Bordetella pertussis strains to antimicrobial peptides. Antimicrob Agents Chemother 1996 Apr; 40(4): 1041-43
15. Lehrer R. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 1993; 11: 105-28
16. Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S et al. Production of á defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun 1999 Jun; 67(6): 2740-5
17. Sahasrabudhe KS, Kimball JR, Morton TH, Weinberg A, Dale BA. Expression of the antimicrobial peptide, human á defensin1, in duct cells of minor salivary glands and detection in saliva. J Dent Res 2000; 79(9): 1669-74
18. Dominy B, Quintans J. Defensin paper. Chicago, IL, USA: University of Chicago, 1999 Jul 14. http://bsd.uchicago.eduimmunobio.papers. defensin.lab
19. Levy O, Ooi CE, Elsbach P, Doerfler ME, Lehrer RI, Weiss J. Antibacterial proteins of granulocytes differ in interaction with endotoxin. J Immunol 1995 May; 154(10): 5403-10
20. Yang D, Chertov O, Bybkovska SN, Chen Q, Buffo MJ et al. á-defensins: linking innate and adaptative immunity through dendritic and T cell CCR6. Science 1999 Oct; 286: 525-8
21. Schonwetter BS, Stolzenberg ED, Zazloff MA. Epithelial antibiotics induced at sites of inflammation. Science 1995 Mar; 267: 1645-8
22. Helmerhorst EJ, Hodgson R, Van’t Hof W, Veerman ECI, Allison C, Nieuw AV. The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 1999 Jun; 78(6): 1245- 50
23. Diamond G, Russell JP, Bevins CHL. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged traqueal epithelial cells. Proc Natl Acad Sci USA 1996 May; 93: 5156-60
24. Krisanaprakornkit S, Weinberg A., Pérez CN, Dale BA. Expression of the peptide antibiotic human defensin á defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 1998 Sep; 66(9): 4222-28
25. Kelly CG, Younson JS, Hikmat BY, Todryk SM, Czis CM et al. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nat Biotechnol 1999 Jan; 17(1): 42-7
26. Argüello G, Lozano JM. Actividad in vitro de péptidos antimicrobianos sintéticos en cepas de S. mutans. Univ Odontol 1999 May; 19(38): 7-12
27. Moll GN, Konings WN, Driessen AJ. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 1999 Jul- Nov; 76(1-4): 185
28. Sablon E, Contreras B, Vandamme E. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 2000; 68: 21-60
29. Smith L, Novak J, Rocca J, Mc Clung S, Hillman JD, Edisson AS. Covalent structure of mutacin 1140 and a novel method for the rapid identification of lantibiotics. Eur J Biochem 2000 Dec; 267(23): 6810
30. Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins - the lantibiotics. Biopolymers 2000, 55 (1): 62-73
31. Qi F, Chen P, Caufield P. The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 2001 Jan; 67(1):15-21
32. Chen P, Novak J, Kirk M, Barnes S, Qi F, Caufield P. Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene replacement strategy. Appl Environ Microbiol 1998 Jul; 64(7): 2335-40
33. Qi F, Chen P, Caufield P. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH3, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 2000 Aug; 66(8): 3221-9
34. Qi F, Chen P, Caufield P. Purification of mutacin III from group III Streptococcus mutans UA 787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 1999 Jun; 65(9): 3880
35. Novak J, Caufield PW, Miller EJ. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol 1994 Jul; 176(14): 4316-20
36. Hillman JD, Dzuback AL, Andrews SW. Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res 1987 Jun; 66(6): 1092-4
37. Grönroos L, Saarela M, Mättö J, Tanner-Salo U, Vuorela A, Alaluusua S. Mutacin production by Streptococcus mutans may promote transmission of bacteria from mother to child. Infect Immun 1998 Jun; 66(6): 2595-600
Cómo citar
Gómez Ramírez, S. I., & Chaves Clavijo, M. (2021). Péptidos antimicrobianos: protectores naturales. Universitas Odontologica, 24(54-55), 114–119. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/13577
Sección
Ciencias Básicas, Biotecnología y Bioinformática

Artículos más leídos del mismo autor/a