Publicado nov 4, 2015



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Nelly Stella Roa Molina

Soledad Isabel Gómez Ramírez

Adriana Rodríguez Ciódaro

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: en la búsqueda de un antígeno vacunal óptimo contra la caries dental en humanos se ha utilizado el péptido PAc(365-377) de la proteína PAc de S. mutans, el cual presenta epítopes T y B para ratones. Poco se conoce acerca de la respuesta en humanos naturalmente sensibilizados. Objetivo: analizar la respuesta inmune humoral y celular frente a PAc(365-377) en relación con el estado de la caries dental. Métodos: se tomaron 30 muestras distribuidas en tres grupos: caries activa, historia de caries y libres de caries. A cada paciente se le cuantificaron las concentraciones de inmunoglobulina A y G (IgA e IgG) salivales y séricas frente al péptido por ELISA y las células productoras de las citocinas IFN-g e IL-2 (perfil TH1), IL-4, IL-5, IL-10 e IL-13 (perfil TH2) por la técnica de estimulación antígeno-específica por citometría de flujo. Resultados: se encontró una respuesta de memoria celular y de anticuerpos frente al péptido PAc(365-377) en humanos naturalmente sensibilizados. Se detectaron tres perfiles de citocinas: TH0, TH1 y TH2, con predominio del perfil TH0 por LTCD4+ y T1 por LTCD8+ en sujetos libres de caries. El 54 % de los individuos no respondió a las citocinas analizadas por LTCD4+ y el 70 % por LTCD8+. No se observaron diferencias estadísticamente significativas en la producción de anticuerpos salivales y séricos entre los grupos. Conclusiones: la respuesta inmune humoral y celular específica frente al péptido PAc(365-377) de S. mutans no muestra diferencia entre pacientes con caries e individuos resistentes a la enfermedad, en humanos naturalmente sensibilizados.

 

Background: PAc(365-377) peptide derived of S. mutans PAc protein has been used in the search for a vaccine against dental caries in humans. This peptide has T and B epitopes in animal model (mice) but this is unknown in naturally sensitized humans. Purpose: analyze the humoral and cellular immune response to the PAc(365-377) peptide regarding dental caries status. Methods: 30 subjects were classified into three groups: active cavities, history of cavities, and caries free subjects. Blood and saliva samples were obtained from each subject. Measures included total amount of salivary and serum IgA and IgG against the PAc(365-377) peptide through ELISA and detection of functional populations of memory T cells that reacted to the PAc(365-377) peptide through frequency of IFN-g and IL-2 (TH1 profile), IL-4, IL-5, IL-10 and IL-13 (TH2 profile) with antigen-specific immune function assays through flow cytometry. Results: a memory cellular and humoral immune response against the PAc(365-377) peptide in naturally sensitized humans was observed. TH0, TH1, and TH2 profiles were detected with TH0 profile prevalence for LTCD4+ and TH1 profile prevalence for LTCD8+ in the caries free group. 54 % of subjects did not react to LTCD4+ analyzed cytokines and 70 % for LTCD8+. There were no statistically significant differences between the groups studied. Conclusions: Cellular and humoral immune response to the PAc(365-377) synthetic peptide from S. mutans did not show association with health or disease in naturally sensitized humans.

Keywords
References
1. República de Colombia, Ministerio de Salud. III Estudio Nacional de Salud Bucal ENSAB III. Tomo VII. 1a ed. Bogotá: República de Colombia, Ministerio de Salud; 1999.
2. Crowley PJ, Brady LJ, Piacentini DA, Bleiweis AS. Identification of a salivary agglutinin-binding domain within cell surface adhesin P1 of Streptococcus mutans. Infect Immun. 1993 Apr; 61(4): 1547-52.
3. Munro GH, Evans P, Todryk S, Buckett P, Kelly CG, Lehner T. A protein fragment of streptococcal cell surface antigen I/II which prevents adhesion of Streptococcus mutans. Infect Immun. 1993 Nov; 61(11): 4590-8.
4. Pecharki D, Petersen FC, Assev S, Scheie AA. Involvement of antigen I/II surface proteins in Streptococcus mutans and Streptococcus intermedius biofilm formation. Oral Microbiol Immunol. 2005 Dec; 20(6): 366-71.
5. Matsumoto-Nakano M, Tsuji M, Inagaki S, Fujita K, Nagayama K, Nomura R, Ooshima T. Contribution of cell surface protein antigen c of Streptococcus mutans to platelet aggregation. Oral Microbiol Immunol. 2009 Oct; 24(5): 427-30.
6. Love RM, McMillan MD, Park Y, Jenkinson HF. Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect Immun. 2000 Mar; 68(3): 1359-65.
7. Zhang S, Green NM, Sitkiewicz I, Lefebvre RB, Musser JM. Identification and characterization of an antigen I/II family protein produced by group A Streptococcus. Infect Immun. 2006 Jul; 74(7): 4200-13.
8. Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol. 2010 Jul; 77(2): 276-86.
9. Jenkinson HF, Demuth DR. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol Microbiol. 1997 Jan; 23(2): 183-90.
10. Takahashi I, Okahashi N, Matsushita K, Tokuda M, Kanamoto T, Munekata E, Russell MW, Koga T. Immunogenicity and protective effect against oral colonization by Streptococcus mutans of synthetic peptides of a streptococcal surface protein antigen. J Immunol. 1991 Jan; 146(1): 332-6.
11. Okahashi N, Takahashi I, Nakai M, Senpuku H, Nisizawa T, Koga T. Identification of antigenic epitopes in an alanine-rich repeating region of a surface protein antigen of Streptococcus mutans. Infect Immun. 1993 Apr; 61(4): 1301-6.
12. Senpuku H, Yanagi K, Nisizawa T. Identification of Streptococcus mutans PAc peptide motif binding with human MHC class II molecules (DRB1*0802, *1101, *1401 and *1405). Immunol. 1998 Nov; 95(3): 322-30.
13. Kawashima M, Hanada N, Hamada T, Tagami J, Senpuku H. Real-time interaction of oral streptococci with human salivary components. Oral Microbiol Immunol. 2003 Aug; 18(4): 220-5.
14. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994 Jan; 76(2): 241-51.
15. Senpuku H, Miyauchi T, Hanada N, Nisizawa T. An antigenic peptide inducing cross-reacting antibodies inhibiting the interaction of Streptococcus mutans PAc with human salivary components. Infect Immun. 1995 Dec; 63(12): 4695-703.
16. Senpuku H, Nakai M, Koga T, Hanada N, Nisizawa T. Identification of a repeated epitope recognized by human serum antibodies in a surface protein antigen of Streptococcus mutans. Oral Microbiol Immunol. 1996 Apr; 11(2): 121-8.
17. Senpuku H, Kato H, Takeuchi H, Noda A, Nisizawa T. Identification of core B cell epitope in the synthetic peptide inducing cross-inhibiting antibodies to a surface protein antigen of Streptococcus mutans. Immunol Invest. 1997 Aug-Dec; 26(5-7): 531-48.
18. Kato H, Takeuchi H, Oishi Y, Senpuku H, Shimura N, Hanada N, Nisizawa T. The immunogenicity of various peptide antigens inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans. Oral Microbiol Immunol. 1999 Aug; 14(4): 213-9.
19. Nomura Y, Eto A, Hanada N, Senpuku H. Identification of the peptide motifs that interact with HLA-DR8 (DRB1*0802) in Streptococcus mutans proteins. Oral Microbiol Immunol. 2002 Aug; 17(4): 209-14.
20. Plitnick LM, Banas JA, Jelley-Gibbs DM, O'Neil J, Christian T, Mudzinski SP, Gosselin EJ. Inhibition of interleukin-2 by a Gram-positive bacterium, Streptococcus mutans. Immunol. 1998 Dec; 95(4): 522-8.
21. Hahn CL, Best AM, Tew JG. Cytokine induction by Streptococcus mutans and pulpal pathogenesis. Infect Immun. 2000 Dec; 68(12): 6785-9.
22. Engels-Deutsch M, Pini A, Yamashita Y, Shibata Y, Haikel Y, Schöller-Guinard M, Klein JP. Insertional inactivation of pac and rmlB genes reduces the release of tumor necrosis factor alpha, interleukin-6, and interleukin-8 induced by Streptococcus mutans in monocytic, dental pulp, and periodontal ligament cells. Infect Immun. 2003 Sep; 71(9): 5169-77.
23. Jiang Y, Magli L, Russo M. Bacterium-dependent induction of cytokines in mononuclear cells and their pathologic consequences in vivo. Infect Immun. 1999 May; 67(5): 2125-30.
24. Brookes RH, Rayfield LS, Bergmeier LA, Shepherd PS. Isolation of a human T cell line specific for a streptococcal cell surface antigen. FEMS Microbiol Immunol. 1991 Jan; 3(3): 177-83.
25. Roa NS, Gomez SI, Rodriguez A. Cytokines produced by CD4+ T cells against a synthetic GTF-I(1301-1322) peptide of Streptococcus mutans in naturally sensitized humans. Acta Odontol Latinoam. 2008 Jan; 21(2): 153-8.
26. Chia JS, Lien HT, Hsueh PR, Chen PM, Sun A, Chen JY. Induction of cytokines by glucosyltransferases of streptococcus mutans. Clin Diagn Lab Immunol. 2002 Jul; 9(4): 892-7.
27. Hermann C, von Aulock S, Graf K, Hartung T. A model of human whole blood lymphokine release for in vitro and ex vivo use. J Immunol Methods. 2003 Apr; 275(1-2): 69-79.
28. Maino VC, Picker LJ. Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression. Cytometry. 1998 Nov; 34(5): 207-15.
29. Jaimes MC, Rojas OL, Gonzalez AM, Cajiao I, Charpilienne A, Pothier P, Kohli E, Greenberg HB, Franco MA, Angel J. Frequencies of virus-specific CD4(+) and CD8(+) T lymphocytes secreting gamma interferon after acute natural rotavirus infection in children and adults. J Virol. 2002 Apr; 76(10): 4741-9.
30. Lehner T, Walker P, Smerdon R, Childerstone A, Bergmeier LA, Haron J. Identification of T- and B-cell epitopes in synthetic peptides derived from a Streptococcus mutans protein and characterization of their antigenicity and immunogenicity. Arch Oral Biol. 1990 Jan; 35 Suppl: 39S-45S.
31. Matsushita K, Nisizawa T, Nagaoka S, Kawagoe M, Koga T. Identification of antigenic epitopes in a surface protein antigen of Streptococcus mutans in humans. Infect Immun. 1994 Sep; 62(9): 4034-42.
32. Senpuku H, Iizima T, Yamaguchi Y, Nagata S, Ueno Y, Saito M, Hanada N, Nisizawa T. Immunogenicity of peptides coupled with multiple T-cell epitopes of a surface protein antigen of Streptococcus mutans. Immunol. 1996 Jun; 88(2): 275-83.
33. Kelly CG, Todryk S, Kendal HL, Munro GH, Lehner T. T-cell, adhesion, and B-cell epitopes of the cell surface Streptococcus mutans protein antigen I/II. Infect Immun. 1995 Sep; 63(9): 3649-58.
34. Walker PR, Smerdon R, Haron J, Lehner T. Mapping major and minor T-cell epitopes in vitro and their immunogenic or tolerogenic effect in vivo in non-human primates. Immunol. 1993 Oct; 80(2): 209-16.
35. Childerstone A, Haron J, Lehner T. The reactivity of naturally sensitized human CD4 cells and IgG antibodies to synthetic peptides derived from the amino terminal sequences of a 3800 MW Streptococcus mutans antigen. Immunol. 1990 Feb; 69(2): 177-83.
36. Gómez SI, Barrientos S. Antígenos usados en vacunas contra la caries dental. Univ Odontol. 2013 Jul-Dic; 32(69): 73-82.
37. Oishi Y, Onozuka A, Kato H, Shimura N, Imai S, Nisizawa T. The effect of amino acid spacers on the antigenicity of dimeric peptide--inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans. Oral Microbiol Immunol. 2001 Feb; 16(1): 40-4.
38. Roa NS, Rodríguez A. Inmunidad Celular y humoral frente a microorganismos cariogénicos y sus factores de virulencia en caries dental en humanos naturalmente sensibilizados. Univ Odontol. 2013 Jul-Dic; 32(69): 61-72.
39. Suárez LJ BM, Salazar J, Roa NS, Fonseca AP, Cuellar A, Rodríguez A. Comparación de la síntesis de interleucina- 1B por monocitos y linfocitos B estimulados con lipopolisacárido en pacientes con enfermedad periodontal. Univ Odontol. 2012 Ene-Jun; 31(66): 103-13.
40. Estes DM. Regulation of IgA responses in cattle, humans and mice. Vet Immunol Immunopathol. 2010 Nov; 138(4): 312-7.
41. Sun Y, Shi W, Yang JY, Zhou DH, Chen YQ, Zhang Y, Yang Y, He BX, Zhong MH, Li YM, Cao Y, Xiao Y, Li W, Yu J, Li YH, Fan MW, Yan HM. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J Dent Res. 2012 Oct; 91(10): 941-7.
42. Niu Y, Sun J, Fan M, Xu QA, Guo J, Jia R, Li Y. Construction of a new fusion anti-caries DNA vaccine. J Dent Res. 2009 May; 88(5): 455-60.
43. Okuda K, Hanada N, Usui Y, Takeuchi H, Koba H, Nakao R, Watanabe H, Senpuku H. Inhibition of Streptococcus mutans adherence and biofilm formation using analogues of the SspB peptide. Arch Oral Biol. 2010 Oct; 55(10): 754-62.
44. Barbieri DS, Tonial F, Lopez PV, Sales Maia BH, Santos GD, Ribas MO, Glienke C, Vicente VA. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch Oral Biol. 2014 May; 59(9): 887-96.
45. Su LK, Yu F, Li ZF, Zeng C, Xu QA, Fan MW. Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine. Acta Pharmacol Sin. 2014 May; 35(5): 592-8.
46. Yan YH, Qi SC, Su LK, Xu QA, Fan MW. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin. 2013 Mar; 34(3): 432-40.
Cómo citar
Roa Molina, N. S., Gómez Ramírez, S. I., & Rodríguez Ciódaro, A. (2015). Respuesta de células T, citocinas y anticuerpos frente al péptido (365-377) de la proteína de adhesión celular de Streptococcus mutans / Cell, Cytokine, and Antibody Response to Streptococcus mutans Cell Surface Protein Antigen Peptide (365-377). Universitas Odontologica, 33(71), 41–52. https://doi.org/10.11144/Javeriana.uo33-71.rcca
Sección
Dossier Temático

Artículos más leídos del mismo autor/a

1 2 3 > >>