Avances del CRISPR/CAS en relación con su aplicación en cáncer colorrectal
##plugins.themes.bootstrap3.article.details##
En el mundo, el cáncer colorrectal (CCR) presenta una alta incidencia tanto en hombres como en mujeres, con una mortalidad del 9,4 %. El estudio de diversos genes implicados como el MSH3 y MUTYH, entre otros, al igual que las múltiples vías afectadas que predisponen su aparición, como la vía Wnt/APC/β-catenina, PI3K/AKT, NF-κB y Ras/Raf, no solo han permitido el entendimiento de la fisiopatología para el diagnóstico, pronóstico y tratamiento del CCR, sino que también han concedido el avance en el establecimiento de nuevas técnicas como CRISPR. Utilizando el sistema CRISPR/Cas, se ha logrado reconocer genes que se constituyen en blancos terapéuticos como ZEB1, miR-139-5p y CCAT1, entre otros; además de favorecer la comprensión de la acción de las proteínas CD133, CD166, FUT4 y FUT9 en los procesos de tumorigénesis, quimiorresistencia, invasión y proliferación celular en CCR. Estudios en modelos in vitro e in vivo han demostrado su posible efectividad terapéutica y diagnóstica, pero no hay suficientes ensayos clínicos que demuestren la aplicación de esta herramienta en humanos. Luego, los hallazgos identificados en esta revisión representan un avance importante hacia la aplicación a futuro del CRISPR como terapia génica en CCR en humanos.
CRISPR, Cáncer colorrectal, Terapia génica, Tratamiento
1. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nature Reviews Disease Primers. 2015;1(1). https://doi.org/10.1038/nrdp.2015.65
2. Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I, Jemal, A, Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-49. https://doi.org/10.3322/caac.21660
3. Mauri G, Sartore-Bianchi A, Russo AG, Marsoni S, Bardelli A, Siena S. Early onset colorectal cancer in young individuals. Mol Oncol. 2018;13(2):109-31. https://doi.org/10.1002/1878-0261.12417
4. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev. 2019;14(2):89-103. https://doi.org/10.5114/pg.2018.81072
5. Siegel RL, Jakubowski CD, Fedewa SA, Davis A, Azad NS. Colorectal cancer in the young: epidemiology, prevention, management. American Society of Clinical Oncology Educational Book. 2020 Apr 21;(40):75-88. https://doi.org/10.1200/EDBK_279901
6. Gil Parada FL, Torres Amaya M, Riveros Santoya SV, et al. Guía de práctica clínica para la tamización del cáncer colorrectal. Rev Colomb Gastroenterol. 2015;30 Supl 1:67-74.
7. Hoevenaar WH, Janssen A, Quirindongo AI, Ma H, Klaasen SJ, Teixeira A, et al. Degree and site of chromosomal instability define its oncogenic potential. Nat Commun. 2020;11(1):1-11. https://doi.org/10.1038/s41467-020-15279-9
8. Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol. 2019;247(5):574-88. https://doi.org/10.1002/path.5229
9. Wyant T, McDowell S, Kalidas M. Treating colorectal cancer (internet). American Cancer Society. The American Cancer Society Medical and Editorial Content Team; 2020 (citado 2021 oct 27). Disponible en: https://thedefender.cancer.org/content/dam/CRC/PDF/Public/8607.00.pdf
10. Sur D, Samasca G, Sur LM, Emanuela F. Treatment of colorectal cancer: actual strategies and promising perspectives. World J Pharm Pharm Sci. 2018;7(8):32-44. https://doi.org/10.20959/WJPPS20188-12033
11. Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett. 2019;447:48-55. https://doi.org/10.1016/j.canlet.2019.01.017
12. Jiang C, Meng L, Yang B, Luo X. Application of CRISPR-Cas9 gene editing technique in the study of cancer treatment. Clin Gen. 2019;97(1):73-88. https://doi.org/10.1111/cge.13589
13. Sayed S, Paszkowski-Rogacz M, Schmitt LT, Buchholz F. CRISPR/Cas9 as a tool to dissect cancer mutations. Methods. 2019;164-165:36-48. https://doi.org/10.1016/j.ymeth.2019.05.007
14. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365. https://doi.org/10.1126/science.aba7365
15. De Rosa M, Ugo P, Rega D, Costabile V, Duraturo F, Izzo P, Delirio P. Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 2015;34(3):1087-96. https://doi.org/10.3892/or.2015.4108
16. Mork ME, You YN, Ying J, Bannon SA, Lynch PM, Rodriguez-Bigas MA, Vilar E. High prevalence of hereditary cancer syndromes in adolescents and young adults with colorectal cancer. J Clin Oncol. 2015;33(31):3544-9. https://doi.org/10.1200/JCO.2015.61.4503
17. Li J, Woods SL, Healey S, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet. 2016;98(5):830-42. https://doi.org/10.1016/j.ajhg.2016.03.001
18. Slowik V, Attard T, Dai H, Shah R, Septer S. Desmoid tumors complicating familial adenomatous polyposis: a meta-analysis mutation spectrum of affected individuals. BMC Gastroenterology. 2015;15(84). https://doi.org/10.1186/s12876-015-0306-2
19. Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, Kirfel J, et al. Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet. 2016;99(2):337-51. https://doi.org/10.1016/j.ajhg.2016.06.015
20. Rohlin A, Eiengård F, Lundstam U, Zagoras T, et al. Grem 1 and POLE variants in hereditary colorectal cancer syndromes. Genes Chromosom Cancer. 2015;55(1):95-106. https://doi.org/10.1002/gcc.22314
21. Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146(5):1208-11. https://doi.org/10.1053/j.gastro.2014.01.022
22. Buchanan DD, Clendenning M, Zhuoer L, Stewart JR, Joseland S, Woodall S, et al. Lack of evidence for germline RNF43 mutations in patients with serrated polyposis syndrome from a large multinational study. Gut. 2016;66(6):1170-2. https://doi.org/10.1136/gutjnl-2016-312773
23. Quintana I, Mejías-Luque R, Terradas M, Navarro M, Piñol V, Mur P, et al. Evidence suggests that germline RNF43 mutations are a rare cause of serrated polyposis. Gut. 2018;67(12):2230-2. https://doi.org/10.1136/gutjnl-2017-315733
24. Gay Muñoz PM, López Padilla SO. Síndrome de Peutz-Jeghers. Acta Méd Grupo Ángeles (internet). 2018;16(1):78-9. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-72032018000100078
25. Haidle JL, MacFarland SP, Howe JR. Juvenile polyposis syndrome. En: GeneReviews (internet). Seattle (WA): University of Washington; 1993-2022 (citado 2021 oct 27). Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1469/
26. Hampel H, Pearlman R, Beightol M, Zhao W, Jones D, Frankel WL, et al. Assessment of tumor sequencing as a replacement for Lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol. 2018;4(6):806. https://doi.org/10.1001/jamaoncol.2018.0104
27. Nieminen TT, O’Donohue MF, Wu Y, Lohi H, Scherer SW, Paterson AD, et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014;147(3):595-8. https://doi.org/10.1053/j.gastro.2014.06.009
28. Yamagishi H, Kuroda H, Imai Y, Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer. 2016;35(4), https://doi.org/10.1186/s40880-015-0066-y
29. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed-Forootan F, Nasr-Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019;9(97). https://doi.org/10.1186/s13578-019-0361-4
30. Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol. 2019;55:106-19. https://doi.org/10.1016/j.semcancer.2018.04.001
31. Patel M, Horgan PG, McMillan DC, Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197:43-56. https://doi.org/10.1016/j.trsl.2018.02.002
32. Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for Genome Engineering. Arch Immunol Ther Exp. 2016;65(3):233-40. https://doi.org/10.1007/s00005-016-0427-5
33. Martinez Oliva BG. CRISPR, una herramienta para editar genomas. Gac Med Bol. 2020;43(2):179-83. https://doi.org/10.47993/gmb.v43i2.66
34. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1911). https://doi.org/10.1038/s41467-018-04252-2
35. Chow RD, Chen S. Cancer CRISPR screens in vivo. Trends Cancer. 2018;4(5):349-58. https://doi.org/10.1016/j.trecan.2018.03.002
36. Khan FA, Pandupuspitasari NS, Chun-Jie H, Ao Z, Jamal M, Zohaib A, et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget. 2016;7(32):52541-52. https://doi.org/10.18632/oncotarget.9646
37. Hsu DS, Kornepati AVR, Glover W, Kennedy EM, Cullen BR. Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Fut Virol. 2018;13(7):475-82. https://doi.org/10.2217/fvl-2018-0010
38. Takeda H, Kataoka S, Nakayama M, Ali MA, Oshima H, Yamamoto D, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. PNAS. 2019;116(31):15635-44. https://doi.org/10.1073/pnas.1904714116
39. Wan C, Mahara S, Sun C, Doan A, Chua HK, Xu D, et al. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci Adv. 2021;7(21). https://doi.org/10.1126/sciadv.abf2567
40. Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, et al. CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263:118525. https://doi.org/10.1016/j.lfs.2020.118525
41. Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 knockout strategies to ablate CCAT1 lncRNA gene in cancer cells. Biol Proced Online. 2018;20(1). https://doi.org/10.1186/s12575-018-0086-5
42. Evron T, Caspi M, Kazelnik M, Shor-Nareznoy Y, Armoza-Eilat S, Kariv R, et al. A CRISPR knockout screen reveals new regulators of canonical Wnt signaling. Oncogenesis. 2021;10(9). https://doi.org/10.1038/s41389-021-00354-7
43. Haiwen Li, Lixia Zhao, Yeh Siang Lau, Chen Zhang, Renzhi Han. Genome-wide CRISPR screen identifies LGALS2 as an oxidative stress-responsive gene with an inhibitory function on colon tumor growth. Oncogene. 2020;40(1):177-88. https://doi.org/10.1038/s41388-020-01523-5
44. Wang Z, Kang B, Gao Q, Huang L, Di J, Fan Y, Yu J, Jiang B, Gao F, Wang D, Sun H, Gu Y, Li J, Su X. Quadruple-editing of the MAPK and PI3K pathways effectively blocks the progression of KRAS-mutated colorectal cancer cells. Cancer Sci. 2021;112(9):3895-3910. https://doi.org/10.1111/cas.15049
45. Boos SL, Loevenich LP, Vosberg S, Engleitner T, Öllinger R, Kumbrink J, Rokavec M, Michl M, Greif PA, et al. Disease modeling on tumor organoids implicates AURKA as a therapeutic target in liver metastatic colorectal cancer. Mol Cancer Res. 2021;13(2):517-40. https://doi.org/10.1016/j.jcmgh.2021.10.008
46. Lei ZN, Teng QX, Wu ZX, Ping FF, Song P, Wurpel JND, Zhe-Sheng Chen ZS. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/cas9 system in SW620/AD300 colorectal cancer cells. Med Comm. 2021;16(2):1-13. https://doi.org/10.1002/mco2.106
47. Li T, Liu D, Lei X, Jiang Q. PAR3L enhances colorectal cancer cell survival by inhibiting LKB1/AMPK signaling pathway. Biochemical and Biophysical Research Communications. 2017;482(4):1037-41. https://doi.org/10.1016/j.bbrc.2016.11.154
48. O'Cathail SM, Wu CH, Thomas R, Hawkins MA, Maughan TS, Lewis A. Nrf2 mediates therapeutic resistance to chemoradiation in colorectal cancer through a metabolic switch. Antioxidants (Basel, Switzerland). MDPI. 2021;10(9):1380. https://dx.doi.org/10.3390%2Fantiox10091380
49. Yu S, Li L, Fan K, Li Y, Gao Y. A genome-scale CRISPR knock-out screen identifies microrna-5197-5p as a promising radiosensitive biomarker in colorectal cancer. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.696713
50. Li W, Cho MY, Lee S, Jang M, Park J, Park R. CRISPR-Cas9 mediated CD133 knockout inhibits colon cancer invasion through reduced epithelial-mesenchymal transition. PLOS ONE. 2019;14(8). https://doi.org/10.1371/journal.pone.0220860
51. Watanabe S, Tsuchiya K, Nishimura R, Shirasaki T, Katsukura N, Hibiya S, et al. TP53 mutation by CRISPR system enhances the malignant potential of colon cancer. Mol Cancer Res. 2019;17(7):1459-67. https://doi.org/10.1158/1541-7786.MCR-18-1195
52. Han S, Yang W, Zong S, Li H, Liu S, Li W, et al. Clinicopathological, prognostic and predictive value of CD166 expression in colorectal cancer: a meta-analysis. Oncotarget. 2017;8(38):64373-84. https://doi.org/10.18632/oncotarget.17442
53. Blanas A, Cornelissen LA, Kotsias M, van der Horst JC, Van de Vrugt HJ, Kalay H, et al. Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dcas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology. 2018;29(2):137-50. https://doi.org/10.1093/glycob/cwy096
54. Giordano G, Febbraro A, Tomaselli E, Sarnicola ML, Parcesepe P, Parente D, et al. Cancer-related CD15/FUT4 overexpression decreases benefit to agents targeting EGFR or VEGF acting as a novel RAF-mek-erk kinase downstream regulator in metastatic colorectal cancer. J Exp Clin Cancer Res. 2015;34(1). https://doi.org/10.1186/s13046-015-0225-7
55. Auslander N, Cunningham CE, Toosi BM, McEwen EJ, Yizhak K, Vizeacoumar FS, et al. An integrated computational and experimental study uncovers FUT 9 as a metabolic driver of colorectal cancer. Mol Syst Biol. 2017;13(12):956. https://doi.org/10.15252/msb.20177739
56. Blanas A, Sahasrabudhe NM, Rodríguez E, van Kooyk Y, van Vliet SJ. Fucosylated antigens in cancer: an alliance toward tumor progression, metastasis, and resistance to chemotherapy. Front Oncol. 2018;8. https://doi.org/10.3389/fonc.2018.00039
57. Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-based platforms for a potential next-generation diagnosis of colorectal cancer through exosomes micro-RNA detection: a review. Cancers. 2021;13(18):4640. https://doi.org/10.3390/cancers13184640
58. Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci. 2021;28(77). https://doi.org/10.1186/s12929-021-00772-0
59. Nagasaka M, Potugari B, Nguyen A, Sukari A, Azmi AS, Ignatius Ou SH. KRAS inhibitors - yes but what next? Direct targeting of KRAS - vaccines, adoptive T cell therapy and beyond. Cancer Treat Rev. 2021;101:102309. https://doi.org/10.1016/j.ctrv.2021.102309
60. Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-based platforms for a potential next-generation diagnosis of colorectal cancer through exosomes micro-RNA detection: a review. Cancers. 2021;13(18):4640. https://doi.org/10.3390/cancers13184640
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.