Publicado sep 20, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


María Del Rosario Sanguino Torrado

Adriana Patricia Rojas Moreno

##plugins.themes.bootstrap3.article.details##

Resumen

El proceso de senescencia celular en los tejidos tiene funciones diversas y heterogéneas. El lado benéfico de la senescencia se relaciona con la homeostasis tisular, porque cumple un papel importante durante el desarrollo embrionario y la remodelación tisular y favorece la desaceleración regenerativa del tejido durante estados de inflamación o tumorogénesis. El lado potencialmente nocivo de la senescencia tiene que ver con el tiempo. Tiempos prolongados promueven la acumulación incontrolada de células senescentes que así disminuyen el potencial regenerativo y funcional tisular. Durante la vida se inducen múltiples señales de estrés a los tejidos que activan los programas de senescencia celular. El marco molecular dentro del cual se lleva a cabo el proceso de senescencia celular incluye un conjunto de programas efectores secuencialmente inducidos como la desregulación de quinasas dependientes de ciclinas (CDK), la sobrerregulación de inhibidores de cinasas dependientes de ciclinas (CdkI), el incremento de la actividad metabólica, la activación de vías de reparación al daño del ADN (DDR) y la inducción de efectores apoptóticos. La epigenética, como reguladora de la expresión genética, dirige la activación o inhibición de los genes que controlan todos estos programas. En este artículo de revisión se describen en detalle los mecanismos epigenéticos responsables de la adquisición del fenotipo senescente en células eucariotas.

Keywords

Senescencia, envejecimiento, epigenética, ciclo celular, código de histonas

References
Referencias
1. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014 Jan 15;28(2):99-114. https://doi.org/10.1101/gad.235184.113
2. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec 1;25(3):585-621.
3. Hernández-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018 Jun 1;28(6):436-53. https://doi.org/10.1016/j.tcb.2018.02.001
4. López-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Review the hallmarks of aging. Cell. 2013;153(6). https://doi.org/10.1016/j.cell.2013.05.039
5. Ferrari S, Pesce M. molecular sciences stiffness and aging in cardiovascular diseases: the dangerous relationship between force and senescence. Int J Mol Sci. 2021;22(7):3404. https://doi.org/10.3390/ijms22073404
6. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014 Mar;14(1):19-30. https://doi.org/10.1016/j.arr.2014.01.004
7. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 2019 Oct 1;15(10):565-81.
8. Collier TJ, Kanaan NM, Kordower JH. Ageing as a primary risk factor for Parkinson’s disease: Evidence from studies of non-human primates. Nat Rev Neurosci. 2011 Jun;12(6):359-66.
9. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012 Sep 11;22(17).
10. Aramillo Irizar P, Schäuble S, Esser D, Groth M, Frahm C, Priebe S, et al. Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat Commun. 2018 Dec 1;9(1):327. https://doi.org/10.1038/s41467-017-02395-2
11. Campisi J. Aging, cellular senescence, and cancer. Ann Rev Physiol. 2013 Feb 10;75:685-705.
12. Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev. 2008 Jul-Aug;129(7-8):467-74. https://doi.org/10.1016/j.mad.2008.04.001
13. Criscione SW, Teo YV, Neretti N. The chromatin landscape of cellular senescence. Trends Genet. 2016 Nov 1;32(11):751. https://doi.org/10.1016/j.tig.2016.09.005
14. Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Cells dissecting aging and senescence-current concepts and open lessons. Cells. 2019 Nov 15;8(11):1446. https://doi.org/10.3390/cells8111446
15. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005 Feb 25;120(4):513-22.
16. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018 Apr 2;1238-46. https://doi.org/10.1172/JCI95148
17. Wengerodt D, Schmeer C, Witte OW, Kretz A. Amitosenescence and pseudomitosenescence: putative new players in the aging process. Cells. 2019 Nov 29;8(12):1546. https://doi.org/10.3390/cells8121546
18. Sapieha P, Mallette FA. Cellular senescence in postmitotic cells: beyond growth arrest. Trends Cell Biol. 2018 Aug 1;28(8):595-607.
19. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010 Nov 15;24(22):2463-79. https://doi.org/10.1101/gad.1971610
20. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019 Oct 31;179(4):813-27. https://doi.org/10.1016/j.cell.2019.10.005
21. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482-96. https://doi.org/10.1038/nrm3823
22. Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age-related diseases. Mediators Inflamm. 2018:9076485. https://doi.org/10.1155/2018/9076485
23. Cohen A, Kennedy B, Anglas U, Bronikowski A, Deelen J, Dufour F, et al. Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework. Mech Ageing Dev. 2020 Oct;191:111316. https://doi.org/10.1016/j.mad.2020.111316
24. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Develop Biol. 2021 Mar 29;0:485.
25. Wei W, Ji S. Cellular senescence: Molecular mechanisms and pathogenicity. J Cell Physiol. 2018 Dec;233(12):9121-9135. https://doi.org/10.1002/jcp.26956
26. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019 Jan;52(1):24-34. https://doi.org/10.5483/BMBRep.2019.52.1.290
27. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016 Apr 6;7:11190. https://doi.org/10.1038/ncomms11190
28. Bordin D, Lirussi L. Nilsen H. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation. DNA Repair [internet]. 2021;99:103051. https://doi.org/10.1016/j.dnarep.2021.103051
29. Panier S, Durocher D. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol. 2013;14(10):661-72. https://doi.org/10.1038/nrm3659
30. Goldstein M, Derheimer FA, Tait-Mulder J, Kastan MB. Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair. Proc Nat Acad Sci. 2013 Oct 15;110(42):16874-9. https://doi.org/10.1073/pnas.1306160110
31. Huo D, Chen H, Cheng Y, Song X, Zhang K, Jun Li M, et al. JMJD6 modulates DNA damage response through downregulating H4K16ac independently of its enzymatic activity. Cell Death Differ. 2020;27:1052-66. https://doi.org/10.1038/s41418-019-0397-3
32. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 2012 Dec;11(6):996-1004.
33. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA Repair. Cell. 2006 Dec 29;127(7):1361-73.
34. Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A, et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Molecular Cell. 2018 Oct 18;72(2):250-262.e6.
35. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015 Oct 28;527(7576):105-9. https://doi.org/10.1038/nature15548
36. Burgess RC, Burman B, Kruhlak MJ, Misteli T. Activation of DNA damage response signaling by condensed chromatin. Cell Rep. 2014 Dec 11;9(5):1703-17.
37. Clouaire T, Legube G. A Snapshot on the cis chromatin response to DNA double-strand breaks. Trends Genet. 2019 May 1;35(5):330-45.
38. Li Y, Li Z, Dong L, Tang M, Zhang P, Zhang C, et al. Histone H1 acetylation at lysine 85 regulates chromatin condensation and genome stability upon DNA damage. Nucleic Acids Res. 2018;46(15). https://doi.org/10.1093/nar/gky568
39. Paluvai H, Giorgio E di, Brancolini C. The histone code of senescence. Cells. 2020 Feb 18;9(2):466. https://doi.org/10.3390/cells9020466
40. Luijsterburg MS, de Krijger I, Wiegant WW, Shah RG, Smeenk G, de Groot AJL, et al. PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol Cell. 2016 Feb 18;61(4):547-62. https://doi.org/10.1016/j.molcel.2016.01.019
41. Xu Y, Ayrapetov MK, Xu C, Gursoy-Yuzugullu O, Hu Y, Price BD. Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell. 2012 Dec 14;48(5):723-33.
42. Hossain MB, Shifat R, Johnson DG, Bedford MT, Gabrusiewicz KR, Cortés-Santiago N, et al. TIE2-mediated tyrosine phosphorylation of H4 regulates DNA damage response by recruiting ABL1. Sci Adv. 2016 Apr 1;2(4).
43. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell. 2011 Mar 4;41(5):529-42.
44. Mattiroli F, Vissers JHA, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012 Sep 14;150(6):1182-95. https://doi.org/10.1016/j.cell.2012.08.005
45. Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CCY, Huang H, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013;499(7456):50-4. https://doi.org/10.1038/nature12318
46. Wilson MD, Benlekbir S, Fradet-Turcotte A, Sherker A, Julien J-P, McEwan A, et al. The structural basis of modified nucleosome recognition by 53BP1. Nature. 2016;536(7614):100-3. https://doi.org/10.1038/nature18951
47. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol. 2013 Mar;20(3):317-25. https://doi.org/10.1038/nsmb.2499
48. Horikoshi N, Sharma D, Leonard F, Pandita RK, Charaka VK, Hambarde S, et al. Pre-existing H4K16ac levels in euchromatin drive DNA repair by homologous recombination in S-phase. Commun Biol. 2019 Jul 5;2:253. https://doi.org/10.1038/s42003-019-0498-z
49. Hauer MH, Seeber A, Singh V, Thierry R, Sack R, Amitai A, et al. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol. 2017 Jan 9;24(2):99-107. https://doi.org/10.1038/nsmb.3347
50. Dabin J, Fortuny A, Polo SE. Epigenome maintenance in response to DNA damage. Mol Cell. 2016 Jun 2;62(5):712-27.
51. Takahashi A, Imai Y, Yamakoshi K, Kuninaka S, Ohtani N, Yoshimoto S, et al. DNA Damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells. Mol Cell. 2012 Jan 13;45(1):123-31.
52. Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021 Apr;78(7):3333-3354. https://doi.org/10.1007/s00018-020-03746-x
53. Sherr CJ. Ink4-Arf locus in cancer and aging. Wiley Interdiscip Rev Dev Biol. 2012 Sep-Oct;1(5):731-41. https://doi.org/10.1002/wdev.40
54. Yang N, Sen P. The senescent cell epigenome. Aging. 2018 Nov 1;10(11):3590-609.
55. Sanders YY, Liu H, Zhang X, Hecker L, Bernard K, Desai L, et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol. 2013;1(1):8-16. https://doi.org/10.1016/j.redox.2012.11.004
56. Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev. 2015 Mar 25;115(6):2350-75. https://doi.org/10.1021/cr500457h
57. Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol. 2017 Nov 5;455:83-92. https://doi.org/10.1016/j.mce.2016.08.049
58. Periyasamy P, Shinohara T. Age-related cataracts: role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection HHS Public Access. Prog Retin Eye Res. 2017;60:1-19.
Cómo citar
Sanguino Torrado, M. D. R., & Rojas Moreno, A. P. (2022). La epigenética como protagonista en la senescencia celular. Universitas Medica, 63(3). https://doi.org/10.11144/Javeriana.umed63-3.epig
Sección
Artículos de revisión

Artículos más leídos del mismo autor/a