Transición epitelio mesénquima: de lo molecular a lo fisiológico
##plugins.themes.bootstrap3.article.details##
Resumen
La transición epitelio mesénquima (EMT) es un proceso compuesto de diferentes fases, donde una célula epitelial adquiere un fenotipo mesenquimal. Dentro de los cambios involucrados se encuentran: pérdida de la polaridad celular, adquisición de una capacidad migratoria, capacidad invasora, resistencia a la apoptosis y aumento en la producción de componentes de la matriz extracelular. Todos estos cambios ocurren como una consecuencia de la activación y represión de genes involucrados con rutas de señalización específicas relacionadas con este evento. La EMT está relacionada con procesos fisiológicos y patológicos como el cáncer. Consta de tres fases: una de células no migratorias, células premigratorias y células migratorias; cada una de ellas producto de diferentes señales intra o extracelulares, factores de transcripción (TGF-B, Snail, TWIST, Sox, Slug, ZEB1, entre otras) y proteínas involucradas (E-cadherina, integrina, vimentina, ocludinas y claudinas).
transition, epithelial, mesenchymal, physiological, pathological, transcription factorstransición, epitelial, mesenquimal, fisiológicos, patológicos, factores de transcripción
2. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333-9.
3. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973-81.
4. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420-8.
5. Dianbo Y, Chaoliu D, Songlin P. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9(12):1608-20.
6. Yulong S, Xiqiang C, Daiming F. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets. 2013;13(9):915-29.
7. Montenegro MA, Rojas MA. Transformación epitelio-mesenquimática durante el desarrollo embrionario. Rev Chil Anat. 2001;19(3):301-10.
8. Moreno MA, Ramírez J, Medina S. Transición de epitelio-mesénquima y migración celular en células de la cresta neural y células metastásicas de carcinomas: revisión de la literatura. Univ Med. 2016;57(1):83-107.
9. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.
10. Sato R, Semba T, Saya H, Arima Y. Concise review: Stem cells and epithelial-mesenchymal transition in cancer: Biological implications and therapeutic targets. Stem Cells. 2016;34:1997-2007.
11. Royer C, Lu X. Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ. 2011;18(9):1470-7.
12. Huang RY, Guilford P, Thiery JP. Early events in cell adhesion
and polarity during epithelial-mesenchymal transition. J Cell Sci. 2012;125:4417-22.
13. Zúñiga L, Freyre S, Navia C, Saavedra S. Adhesión celular: el ensamblaje de la vía al cáncer. Morfolia. 2014;6(2):3-19.
14. Dietmar V. Cadherins in tissue architecture and disease. J Mol Med. 2015;93:5-11.
15. Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell. 2005;123:889-901.
16. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1-2):15-33.
17. Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol. 2002;42:283-323.
18. Zaidel-Bar R, Geiger B. The switchable integrin adhesome. J. Cell Sci. 2010;123:1385-8.
19. Prindull G. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood. 2004;103(8):2892-9.
20. Nieto M. The ins and outs of the epithelial to mesenchymal transition in health and disease. Ann Rev Cell Dev Biol. 2001;27(1):347-76.
21. Ochoa AB, Juárez CI, Rosales MA, Barros P. La vía de señalización Wnt-B-catenina y su relación con cáncer. Cir Cir. 2012;80:389-98.
22. Weinberg RA. The biology of cancer. 2a ed. s. l.:Garland Science; 2013.
23. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156-72.
24. Mamuya FA, Duncan MK. aV integrins and TGF-β-induced EMT: a circle of regulation. J Cell Mol Med. 2012;16(3):445-455.
25. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-β and the smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005;16(4):1987-2002.
26. Francí C, Takkunen M, Dave N, et al. Expression of Snail protein in tumor-stroma interface. Oncogene. 2006;25:5134-44.
27. Postigo A. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J. 2003;22(10):2443-52.
28. Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelial-mesenchymal transition. J Clin Med 2016;5(7):63.
29. Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature. 1999;403:676-80.
30. Niu R, Zhang L, Xi G, et al. Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2007;26:385-94.
31. Heerboth S, Housman G, Leary M. EMT and tumor metastasis. Clin Trans Med. 2015;4:6.
32. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429-37.
33. Van Aelst L, Symons M. Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16:1032-54.
34. Tsai J, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192-2206.
35. Radisky DC, Levy DD, Littlepage LE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123-7.
36. Zhao X, Yu D, Yang J, Xue K, Liu Y, Jin C. Knockdown of Snail inhibits epithelial-mesenchymal transition of human laryngeal squamous cell carcinoma Hep-2 cells through VDR signaling pathway. Biochem Cell Biol. 2017. doi: 10.1139/bcb-2017-0039
37. Li H, Zhong A, Li S, Meng X, Wang X, Xu F, Lai M. The integrated pathway of TGFβ/Snail with TNFα/NFκB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis. Sci Rep. 2017;7(1):4915.
38. Hajra KM, Y-S D, Fearon C, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;2(6);1613-8.
39. Turner FE, Broad S, Khanim FL, Jeanes A, Talma S, Hughes S, Tselepis C, Hotchin NA. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J Biol Chem. 2006;281:21321-31.
40. Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD. Drabkin HA. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 2011;300:66-78.
41. Lazarova D, Bordonaro M. ZEB1 Mediates drug resistance and EMT in p300-deficient CRC. J Cancer. 2017;8:1453-9.
42. Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, et al. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol. 2012;105:655-61.
43. Gao Y, Li W, Liu R, Guo Q, Li J, Bao Y, et al. Norcantharidin inhibits IL-6-induced epithelial‑mesenchymal transition via the JAK2/STAT3/TWIST signaling pathway in hepatocellular carcinoma cells. Oncol Rep. 2017;38(2):1224-32.
44. Doggett K, Turkel N, Willoughby LF, Ellul J, Murray MJ, Richardson HE, Brumby AM. BTB-zinc finger oncogenes are required for Ras and notch-driven tumorigenesis in drosophila. PLoS ONE. 2015;10:e0132987
45. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999;144(6):1235-44.
46. Hitomi M, Stacey D. Cyclin D1 production in cycling cells depends on Ras in a cell-cycle-specific manner. Curr Biol. 1999;9:1075-84.
47. Zuccarini M, Giuliani P, Buccella S, Di Liberto V, Mudò G, Belluardo N, Carluccio M, et al. Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells. Purinergic Signal. 2017;13:1-14.
48. Zhang W, Liu H. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002;12(1):9-18.
49. DeBerardinis R, Lum J, Hatzivassiliou G, Thompson C. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism, 2008;7:11-20.
50. Poser S. Impey S, Trinh K, Xia Z, Storm DR. SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J. 2000;19(18):4955-66.