Publicado Mar 9, 2021



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Descargas


Leonor Camargo-Uribe

Eliana Martínez-Mora

##plugins.themes.bootstrap3.article.details##

Resumen




Este artículo de investigación presenta una vía para involucrar a estudiantes en ambientes de indagación en donde exploren, conjeturen, justifiquen y comuniquen sus hallazgos, al resolver problemas de construcción geométrica con apoyo de GeoGebra. Para ello, se empleó la metodología experimento de diseño, con estudiantes de 10 a 12 años, para poner la vía en funcionamiento y evaluar su efectividad. Se concluye que el reto de promover tal ambiente va más allá del diseño de situaciones problema. Se requiere un cambio en la cultura de la clase, promovido principalmente por el profesor, para generar un espacio colectivo de participación.





Keywords

Ambiente de la clase, aprendizaje, educación básica, geometría, igualdad de oportunidadesClassroom environment, learning, equal opportunity, geometry, basic education

References
Camargo, L. & Sandoval, I. (2017). Acceso equitativo al razonamiento científico mediante la tecnología. Revista Colombiana de Educación, 73, 179–211.

Cotton, T. (1998). Towards a Mathematics Education for Social Justice (tesis doctoral). Nottingham: University of Nottingham, Reino Unido.

Forman, E. (1996). Learning mathematics as participation in classroom practice: Implications of sociocultural theory for educational reform. En L. Steffe, P. Nesher, P. Cobb, G. Goldin & B. Greer, Theories of Mathematical Learning (pp. 115–129). Mahwah, NJ: Lawrence Erlbaum.
23

Furinghetti, F., Olivero, F. & Paola, D. (2001). Students approaching proof through conjectures: Snapshots in classroom. International Journal of Mathematical Education in Science and Technology, 32(3), 319–335.

Goos, M. (2004). Learning mathematics in a classroom community on inquiry. Journal for Research in Mathematics Education, 35(4), 258–291.

Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1-3), 151–161.

Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1-3), 25–53.

Ministerio de Educación Nacional (MEN). (2006). Estándares básicos de competencias en matemáticas. Bogotá: Ministerio de Educación Nacional.

Molina, M., Castro, E., Molina, J. & Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias, 29(1), 75–88.

Puentes, J. (2015). Ambiente indagativo y argumentación en un contexto de geometría dinámica: una experiencia en grado séptimo (tesis de maestría). Universidad Pedagógica Nacional, Bogotá, Colombia.

Quaranta, M. & Tarasow, P. (2004). Validación y producción de conocimientos sobre las interpretaciones numéricas. Relime, 7(3), 219–233.

Richards, J. (1991). Mathematical discussions. En E. von Glasersfeld (ed.), Radical Constructivism in Mathematics Education (pp. 13–51). Dordrecht: Kluwer Academic.

Samper, C. & Molina, O. (2013). Geometría plana: un espacio de aprendizaje. Bogotá: Universidad Pedagógica Nacional.

Skovsmose, O. (2000). Escenarios de investigación. Revista EMA, 6(1), 3–26.

Yackel, E. & Cobb, P. (1996). Sociomathematical norms, argumentation and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

Yevdokimov, O. (2005). About a constructivist approach for stimulating students’
thinking to produce conjectures and their proving in active learning of geometry. Recuperado de https://eprints.usq.edu.au/3352/1/1-Yevdokimov_CERME4.pdf
Cómo citar
Camargo-Uribe, L., & Martínez-Mora, E. (2021). Construcción de triángulos, recurso para impulsar un ambiente de indagación. Magis, Revista Internacional De Investigación En Educación, 14, 1-24. https://doi.org/10.11144/Javeriana.m14.ctri
Sección
Artículos