Joan Josep Solaz Portolés

Vicent Sanjosé López


Este artículo presenta una visión en conjunto de las investigaciones sobre la base de conocimientos y los procesos cognitivos implicados en la resolución de problemas, y cómo éstos afectan el desempeño de los estudiantes cuando resuelven los problemas. En la base de conocimientos se discute el conocimiento declarativo, el procedimental, el estratégico, el situacional y el esquemático. Entre los procesos cognitivos se habla del razonamiento formal, construcción de modelos mentales, transferencia de conocimientos y metacognición. A partir de todo ello, se sugiere una serie de medidas instruccionales que pueden tener aplicación en el aula de ciencias.



Procesos cognitivos, métodos de enseñanza, resolución de problemas, enseñanza de las ciencias

Abdullah, F. A. P. B. (2006). The pattern of Physics problem-solving from the perspective of metacognition. Master dissertation, University of Cambridge, Cambridge, US A. Retrieved January 12, 2007, from http://people.pwf.cam.ac.ok/kst24/ResearchStudents/Abdullah2006meta - cognition.pdf

Alloway, T. P. (2006). How does working memory work in the classroom? Educational Research and Reviews, 1, 134-139.

Artz, A. F. & ArmourThomas, E. (1992). Development of a cognitive-meta - cognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9, 137-175.

Ausubel, D., Novak, J. & Hanesian, H. (1978). Educational Psychology: A cognitive view (2nd ed.). New York: Holt, Rinehart & Winston.

Bauer, M. I. & Johnson-Laird, P. N. (1993). How diagrams can improve rea - soning. Psychological Science, 4, 372-378.

Bernardo, A. B. I. (2001). Analogical problem construction and transfer in mathematical problem solving. Educational Psychology, 21, 137-150.

Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873-877.

Bodner, G. M. & Domin, D. S. (2000). Mental models: The role of rep - resentations in problem solving in Chemistry. University Chemistry Education, 4, 24-30.

Brooks, D. W. & Shell, D. F. (2006). Working memory, motivation, and teacher-initiated learning. Journal of Science Education and Technology, 15, 17-30.

Byrnes J. P. (1996). Cognitive development and learning in instructional contexts. Boston, M A: Allyn & Bacon.

Cañas, J. J., Antolí, A. & Quesada, J. F. (2001). The role of working memory on measuring mental models of physical systems. Psicológica, 22, 25-42.

Catrambone, R. & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1147-1156.

Chandran, S., Treagust, D. F. & Tobin, K. (1987). The role of cognitive fac - tors in chemistry achievement. Journal of Research in Science Teaching, 24(2), 145-160.

Cooper, G. A. & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Cognition Science, 13, 145-182.

Costa, S. S. C. & Moreira, M. A. (2001). A resoluçao de problemas como um tipo especial de aprendizagem significativa. Caderno Catarinense de Ensino de Física, 18(3), 263-277.

Cui, L, Rebello, N. S., Fletcher, P. R & Bennett, A. G. (2006). Transfer of learning from college calculus to physics courses. Proceedings of the N ARS T 2006 Annual Meeting, San Francisco, C A. Retrieved December 1, 2007, from http://web.phy.ksu.edu/papers/2006/Cui_ NARST2006.pdf

Danili, E. & Reid, N. (2004). Some strategies to improve performance in school chemistry, based on two cognitive factors. Research in Science and Technological Education, 22, 203-226.

Dawson, D. (1993). Chemistry in concept. Education in Chemistry, 30, 73-75.

De Jong, T. & Ferguson-Hessler, M. G. H. (1986). Cognitive structure of good and poor novice problems in physics. Journal of Educational Psychology, 78, 279-288.

Doise, W. (1986). Levels of explanation in social psychology. Cambridge, UK: Cambridge University Press.

Doise, W. & Mugny, G. (1984). The social development of the intellect. Oxford, UK: Pergamon Press.

Doise, W. & Palmonari, A. (1984). Social interaction in individual development. Cambridge, UK: Cambridge University Press.

Ericsson, K. A. & Kintsch, W. (1995). Long-term working memory. Psycho - logical review, 102(2), 211-245.

Escudero, C. (1995). Resolución de problemas en Física: herramienta para reorganizar significados. Caderno Catarinense de Ensino de Física, 12, 95-106.

Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231-236). Hillsdale, NJ: Lawrence Erlbaum.

Fergurson-Hessler, M. G. M. & de Jong, T. (1990). Studying physics texts: Differences in study processes between good and poor performers. Cognition and Instruction, 7, 41-54.

Fernández Rivera, J., Sanjosé, V. & Otero, J. (2007, noviembre 22-24). In - fluencia del nivel de control de la comprensión y del nivel de comprensión lectora en el aprendizaje de la evolución [Resumen]. En Actas del XX Congreso de ENCIG - Asociación dos Ensinantes de Ciências de Galizia, Sanxenxo, Portugal, 53-55.

Friege, G. & Lind, G. (2006). Types and qualities of knowledge and their relation to problem solving in physics. International Journal of Science and Mathematics Education, 4, 437-465.

Garofalo, J. & Lester, F. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal of Research in Mathematics Edu - cation, 16(3), 163-176.

Gathercole, S. E. (2004). Working memory and learning during the school years. Proceedings of the British Academy, 125, 365-380.

Gick, M. L. & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38.

Goldstone, R. L. & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptative systems. Cognitive Psychology, 46, 414-466.

Herron, J. D. (1978). Role of learning and development: Critique of Novak’s comparison of Ausubel and Piaget. Science Education, 62, 593-605.

Horak, V. M. (1990, April). Students’ cognitive styles and their use of problem solving heuristics and metacognitive proceses. Paper presented at the Annual Meeting of the National Council of Teachers of Mathematics, Salt Lake City, Utah, United States.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, UK: Cambridge University Press.

Johnson-Laird, P. N. (2000). The current state of the mental model theory. In J. A. García-Madruga, N. Carriedo & M. J. González-Labra (Eds.), Mental models in reasoning (pp. 16-40). Madrid: UNED.

Johnstone, A. H. (1993). Introduction. In C. Wood and R. Sleet (Eds.), Creative problem Solving Chemistry (pp. IV-VI). London: The Royal Society of Chemistry.

Johnstone, A. H. & El-Banna, H. (1986). Capacities, demands and processes: A predictive model for science education. Education in Chemistry, 23, 80-84.

Johnstone, A. H., Hogg, W. R. & Ziane, M. (1993). A working memory applied to physics problem solving. International Journal of Science Education, 15, 663-672.

Jonassen, D. (2000). Toward a design theory of problem-solving. Educational Technology: Research and Development, 48, 63-85.

Kurtz, K. J. & Loewenstein, J. (2007). Converging on a new role of analogy in problem solving and retrieval: When two problems are better than one. Memory & Cognition, 35(2), 334-341.

Lawson, A. E. & Karplus, R. (1977). Should theoretical concepts be taught before formal operations? Science Education, 61, 123-125.

Leal, L. (1987). Investigation of the relation between metamemory and university students’ examination performance. Journal of Educational Psychology, 79, 35-40.

Lee, K. W. L. (1985). Cognitive variables in problem solving in chemistry. Research in Science Education, 15, 43-50.

Lee, K. W. L., Goh, N. K., Chia, L. S. & Chin, C. (1996). Cognitive variables in problem solving in chemistry: A revisited study. Science Education, 80, 691-710.

Lee, K. W. L., Tang, W., Goh, N. & Chia, L. (2001). The predicting role of cognitive variables in problem solving in mole concept. Chemistry Education: Research and Practice in Europe, 2(3), 285-301.

Lobato, J. E. (2003). How design experiments can inform a rethinking of transfer and viceversa. Educational Researcher, 32(1), 17-20.

Loewenstein, J., Thompson, L. & Gentner, D. (1999). Analogical encoding facilitates knowledge transfer in negotiation. Psychonomic Bulletin & Review, 6, 586-597.

Longo, P. J., Anderson, O. R. & Wicht, P. (2002). Visual Thinking Networking promotes problem solving achievement for 9th Grade earth science students. Electronic Journal of Science Education, 7(1), Article 7. Retrieved November 20, 2006, from http://unr.edu/homepage/jcannon/ejse/ejse.html

Lorenzo, M. (2005). The development, implementation, and evaluation of a problem solving heuristic. International Journal of Science and Mathematics Education, 3, 33-58.

Lumpe, A. T. (1995). Peer interaction in science concept development and problem solving. School Science and Mathematics, 95(6), 302-309.

Mayer, R. E. (1992). Thinking, problem solving and cognition (2nd ed.). New York: Freeman. Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem-solving. Instructional Science, 26, 49-63.

Neto, A. & Valente, M. (1997, march 21-24). Problem solving in physics: Towards a metacognitively developed approach. Paper presented at Annual Meeting (70th) of the National Association for Research in Science Teaching, Oak Brook, Il., United States.

Níaz, M. (1987). Relation between M-space of students and M-demand of different items of general chemistry and its interpretation based upon the Neopiagetian theory of Pascual-Leone. Journal of Chemical Education, 64, 502-505.

Novak, J. D. & Gowin, D. (1984). Learning how to learn. New York: Cam - bridge University Press. Oliva, J. M. (2004). El pensamiento analógico desde la investigación educativa y desde la perspectiva del profesor de ciencias. Revista electrónica de Enseñanza de las Ciencias, 3(3), Artículo 7. Recuperado el 1ª de julio, 2007, de http://saum.uvigo.es/reec

O’Neil, H. F. & Schacter, J. (1999). Test specifications for problem solving assessment. Retrieved March 1, 2007, from http://www.cse.edu/Reports/ TECH463.pdf

Opdenacker, C., Fierens, H., Brabant, H. V., Sevenants, J., Slootamekers, P. J., Spruyt, J. & Johnstone, A. H. (1990). Academic performance in solving chemistry problems related to student working memory capacity. International Journal of Science Education, 12, 177-185.

Otero, J., Campanario, J. M. & Hopkins, K. D. (1992). The relationship between academic achievement and metacognitive comprehension monitoring ability of Spanish secondary school students. Educational and Psychological Measurement, 52, 419-430.

Palumbo, D. (1990). Programming language/problem solving research: A review of relevant issues. Review of Educational Research, 60(1), 65-89.

Pascual-Leone, J. (1989). An organismic process model of Witkin’s field dependence-independence. In T. Globerson & T. Zelniker (Eds.), Cognitive style and cognitive development (pp. 36-70). Norwood, NJ: Ablex.

Pascual-Leone, J. & Goodman, D. (1979). Intelligence and Experience: A Neo-Piagetian approach. Instructional Science, 8, 301-367.

Pendley, B. D., Bretz, R. L. & Novak, J. D. (1994). Concept map as a tool to assess learning in chemistry. Journal of Chemical Education, 71, 9-15.

Pintrich, P. R. & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40.

Pokay, P. & Blumenfeld, P. C. (1990). Predicting achievement early and late in the semester: The role of motivation and use of learning strategies. Journal of Educational Psychology, 82, 41-50.

Rebello, N. S., Cui, L., Bennet, A. G., Zollman, D. A. & Ozimek, D. J. (2007). Transfer of learning in problem solving in the context of mathematics and physics. In D. Jonassen (Ed.), Learning to solve complex scientific problems (pp. 223-246). Hillsdale, NJ: Lawrence Earlbaum.

Reed, S. K. (1987). A structure-mapping model for word problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 124-139.

Reed, S. K. (1993). A schema-based theory of transfer. In D. K. Detterman & R. J. Stemberg (Eds.), Transfer on trial: Intelligence, Cognition and Instruction (pp. 39-67). Norwood, NJ: Ablex.

Reed, S. K., Ernst, G. W. & Banerjii, R. (1974). The role of analogy in transfer between similar problem states. Cognitive Psychology, 6, 436-450.

Ross, B. (1984). Remindings and their effects in learning a cognitive skill. Cognitive Psychology, 16, 371-416.

Ross, B. (1987). This is like that: The use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 629-639.

Sanjosé, V., Valenzuela, T., Fortes, M. C. & Solaz-Portolés, J. J. (2007). Dificultades en la resolución de problemas por transferencia. Revista electrónica de Enseñanza de las Ciencias, 6(3), 538-561. Recuperado el 3 de enero, 2008, de http://saum.uvigo.es/reec

Sanjosé, V., Valenzuela, T. & Solaz-Portolés, J. J. (2008). Effects of Mapping, Cognitive Styles and Previous Experience on Algebraic Problem Solving Transfer Activities. Manuscrito no publicado.

Santamaría, C., García-Madruga, J. A. & Carretero, M. (1996). Beyond belief bias: Reasoning from conceptual structures by mental models manipulation. Memory & Cognition, 24, 250-261.

Scaife, M. & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human-computer Studies, 45, 185-213.

Shavelson, R. J., Ruiz-Primo, M. A. & Wiley, E. W. (2005). Windows into the mind. Higher Education, 49, 413-430.

Shayer, M. & Adey, P. (1993). Accelerating the development of formal thinking in middle and high school students. IV: Three years after a two-year intervention. Journal of Research in Science Teaching, 30, 351-366.

Solaz-Portolés, J. J. & Sanjosé, V. (2006). ¿Podemos predecir el rendimiento de nuestros alumnos en la resolución de problemas? [Versión electrónica]. Revista de Educación, 339, 693-710. Recuperado el 5 de enero, 2007, de http://www.revistaeducacion.mec.es

Solaz-Portolés, J. J. & Sanjosé, V. (2007a). Cognitive variables in science problem solving: A review of research. Journal of Physics Teachers Education Online, 4(2), 25-32. Recuperado el 28 de abril, 2007, de http://www.phy.ilstu.edu/jpteo.

Solaz-Portolés, J. J. & Sanjosé, V. (2007b). Resolución de problemas, modelos mentales e instrucción. Revista electrónica de Enseñanza de las Ciencias, 6(1), 70-89. Recuperado el 3 de julio, 2007, de http://saum. uvigo.es/reec

Solaz-Portolés, J. J. & Sanjosé, V. (2007c). Representations in problem solving in science: Directions for practice. Asia Pacific Forum on Science Learning and Teaching, 8(2), Article 4. Retrieved January 15, 2008, from http://www.ied.edu.hk/apfslt

Solaz-Portolés, J. J. & Sanjosé, V. (2008a). Piagetian and Neo-Piagetian variables in science problem solving. Ciências & Cognição, 13(2), 192-200. Retrieved August 5, 2008, from http://www.cienciasecognicao.org

Solaz-Portolés, J. J. & Sanjosé, V.(2008b). Conocimiento previo, modelos mentales y resolución de problemas. Revista Electrónica de Investigación Educativa, 10(1). Recuperado el 5 de julio, 5, 2008, from http://redie.uabc.mx/vol10no1/contenido-contenido.html

Solaz-Portolés, J. J. & Sanjosé, V. (2008c). Working memory in science problem solving: A review of research. Aceptado para publicación en Revista Mexicana de Psicología, México.

Stevens, R. & Palacio-Cayetano, J. (2003). Design and performance frame - works for constructing problem-solving simulations. Cell Biology Education, 2, 162-179.

Sweller, J., van Merrienboer, J. J. & Pass, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251- 296.

Taconis, R., Ferguson-Hessler, M. G. M. & Broekkamp, H. (2001). Teaching science problem solving: An overview of experimental work. Journal of Research in Science Teaching, 38, 442-468.

Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem solving. Journal of Computer Assisted Learning, 19, 46-55.

Tsaparlis, G. (1998). Dimensional analysis and predictive models in problem solving. International Journal of Science Education, 20, 335-350.

Tsaparlis, G. (2005). Non-algorithmic quantitative problem solving in university physical chemistry: a correlation study of the role of selective cognitive factors. Research in Science & Technological Education, 23, 125-148.

Tsaparlis, G. & Angelopoulos, V. (2000). A model of problem solving: Its operation, validity, and usefulness in the case of organic-synthesis problems. Science Education, 84, 131-153.

Warnakulasooriya, R. & Pritchard, D. E. (2005). Learning and problemsolving transfer between physics problems solving using web-based homework tutor. Conference Proceedings EdMedia-World Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 2976-2983). Retrieved December 2, 2007, from http://relate.mit.edu./publications.html

Zajchowski, R. & Martin, J. (1993). Differences in the problem solving of stronger and weaker novices in physics: Knowledge, strategies, or knowledge structure. Journal of Research in Science Teaching, 30, 459-470.

Zeitoun, H. H. (1989). The relationship between abstract concept achievement and prior knowledge, formal reasoning ability and gender. International Journal of Science Education, 11(2), 227-234.

Zoller, U., Lubezky, A., Nakhleh, M. B., Tessier, B. & Dori, Y. J. (1995). Success on algorithmic and LOCS vs. conceptual chemistry exam questions. Journal of Chemical Education, 72, 987-989.
Cómo citar
Solaz Portolés, J., & Sanjosé López, V. (2008). Conocimientos y procesos cognitivos en la resolución de problemas de ciencias: consecuencias para la enseñanza. Magis, Revista Internacional De Investigación En Educación, 1(1). Recuperado a partir de https://revistas.javeriana.edu.co/index.php/MAGIS/article/view/3361
Artículos más leídos del mismo autor/a