Resumen
In this article an alternative for finding real and/or complex roots of system of nonlinear equations is described. The problem of solving directly such systems was transformed into an optimization one, which was solved using a specially modified particle swarm optimization. As an example, system of two, five and ten equations were solved using a conventional personal computer as well as a cluster of for nodes. It was concluded that this strategy is valid for solving this type of system of equations. Moreover, using the cluster no computational time improvement was detected.
BIANCHINI, M.; FANELLI, S. and GORI, M. Optimal algorithms for well-conditioned nonlinear systems of equations. IEEE Trans On Computers. 2001, vol. 50, no. 7, pp. 689-698.
BRITS, R.; ENEGELBRECHT, A. and VAN DEN BERGH, F. Solving systems of unconstrained equations using particle swarm optimization. Pretoria, South Africa: Department of Computer Science, University of Pretoria, 2002.
CLERC, M. Particle swarm optimization. 1st Edition. ISTE, 2006. Chap. 3
CUI, Z. and CAI, X. Using social cognitive optimization algorithm to solve nonlinear equations. Shanxi, China, 2010. Proc. 9th IEEE Int. Conf. On Cognitive Informatics, June 2005. pp. 199-203.
FLOUDAS, C. Deterministic global optimization. Kluwer Academic Publisher, 1999. Chap. 12.
GENG H. T.; SUN Y. J.; SONG Q. X. et al. Research of ranking method in evolution strategy for solving nonlinear system of equations. The 1st International Conference on Information Science and Engineering (ICISE2009), IEEE Computer Society, pp. 348-351.
GÓMEZ, L. Propuesta de demostración del teorema sobre la relación entre sistemas de ecuaciones y el problema de optimización (Comunicación interna UIS. Nov 11, 2010).
GROSAN, C. and ABRAHAM, A. A new approach for solving nonlinear equations systems. IEEE Trans. On Systems and Cybernetics-Part A: Systems and Humans. 2008, vol. 38, no. 3, pp. 698-713.
GROSAN, C. and ABRAHAM, A. Multiple solutions for a system of nonlinear equations. International J. of Innovative Computing. Information and Control, ICIC. 2008, pp. 76-82.
HATANAKA, T; UOSAKI, K. and KOGA, M. Evolutionary computation approach to block oriented nonlinear model. Control Conference. 2004. 5th Asian, pp. 90-96.
HUI, W. and ZHAO, Z. A neural network algorithm for solving systems of nonlinear equations. Changsha, Hunan, China: College of Electrical & Information Engineering, University of Science & Technology, 2008.
LUO, Y. Z.; TANG, G. J. and ZHOU, L. N. Hybrid approach for solving systems of nonlinear equations using chaos optimization and quasi-Newton method. Applied Soft Computing. 2008, 8, pp. 1068-1073.
ORTEGA, J. and RHEINBOLDT, W. Iterative solution of nonlinear equations in several variables. New York: Academic Press, 1970.
OUYANG, A.; ZHOU, Y. and LUO, Q. Hybrid particle swarm optimization algorithm for solving systems of nonlinear equations. Granular Computing, 2009, GRC '09. IEEE International Conference on, pp.46-465.
PARSOPOULOS, K. and VRHATIS, M. Particle swarm optimization and intelligence: advances and applications. Ed. Information Science Reference, 2010, Chaps 1-4.
RAO, S. Engineering optimization, theory and practice. 4th edition. Ed. John Wiley & Sons, 2009. Chap. 2-13.
TSOULOS, I. and STAVRAKOUDIS, A. On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Analysis: Real World Applications. 2010, vol. 11, no. 4, pp 2465-2471.
YANG, B.; ZHANG, Z. and SUN Z. Computing nonlinear lst estimator based on a random differential evolution strategy. Tsinghua Science and Technology. 2008, vol. 13, no.1, pp.1007-0214.
Una vez aceptado un trabajo para publicación la revista podrá disponer de él en toda su extensión, tanto directamente como a través de intermediarios, ya sea de forma impresa o electrónica, para su publicación ya sea en medio impreso o en medio electrónico, en formatos electrónicos de almacenamiento, en sitios de la Internet propios o de cualquier otro editor. Este uso tiene como fin divulgar el trabajo en la comunidad científica y académica nacional e internacional y no persigue fines de lucro. Para ello el autor o los autores le otorgan el permiso correspondiente a la revista para dicha divulgación mediante autorización escrita.
Todos los articulos aceptados para publicación son sometidos a corrección de estilo. Por tanto el autor /los autores autorizan desde ya los cambios sufridos por el artículo en la corrección de estilo.
El autor o los autores conservarán los derechos morales y patrimoniales del artículo.