Publicado dic 29, 2020



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Lina Janeth Suárez Londoño

María Cecilia Martínez Pabón

Roger Mauricio Arce Muñoz

Adriana Rodríguez Ciódaro

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes: En la práctica dental contemporánea las recomendaciones o pautas de descontaminación oral se dispararon durante la pandemia de COVID-19, debido a la presencia relativamente alta de SARS-CoV-2 en la saliva y la posibilidad de riesgo de contagio a través de su aerosolización. Sin embargo, dichas pautas se basan principalmente en investigaciones realizadas para otras enfermedades causadas por diferentes virus o bacterias, publicaciones con evidencia de bajo nivel o información anecdótica. Objetivo: Revisar la base biológica del uso de antisépticos orales para disminuir la carga viral en la saliva como un mecanismo plausible para reducir el riesgo de transmisión de SARS-CoV-2, incluyendo otros aspectos como la patogénesis, la expresión de la enzima convertidora de angiotensina 2 en la cavidad oral, la aerosolización y los antisépticos orales con propiedades virucidas potenciales. Resultados: Nuestro grupo solo pudo identificar un número limitado de informes que evalúan los efectos directos específicos de los antisépticos orales de uso común (peróxido de hidrógeno, povidona yodada y clorhexidina) sobre SARS-CoV-2; sin embargo, estos informes se limitan a la desinfección de superficies, la actividad in vitro u observaciones preliminares in vivo. Conclusión: Aunque llegamos a la conclusión de que no existe evidencia directa de la efectividad clínica del uso de enjuagues bucales antes de procedimientos dentales con soluciones antisépticas para SARS-CoV-2 específicamente hasta la fecha, aquí presentamos recomendaciones que podrían ayudar a reducir el riesgo de transmisión en el consultorio odontológico.

Keywords

cetylpyridinium, chlorhexidine, dentistry, hydrogen peroxide, hypochlorous acid, mouth, oral decontamination, oral microbiology, povidone-iodine, prevention, SARS-CoV-2acido hipocloroso, cavidad oral, cetilpiridinio, clorhexidina, descontaminación oral, microbiología oral, odontología, peróxido de hidrógeno, prevención, SARS-CoV-2, yodopovidonaácido hipocloroso, boca, descontaminação oral, cetilpiridínio, clorexidina, microbiologia oral, odontologia, peróxido de hidrogênio, povidona-iodo, prevenção, SARS-CoV-2

References
1. Braz-Silva PH, Pallos D, Giannecchini S, To KKW. SARS-CoV-2: What can saliva tell us? Oral Dis. 2020 Apr. https://doi.org/10.1111/odi.13365
2. Thompson RN, Cunniffe NJ. The probability of detection of SARS-CoV-2 in saliva. Stat Methods Med Res. 2020 Apr; 29(4): 1049-1050. https://doi.org/10.1177/0962280220915049
3. Baghizadeh Fini M. What dentists need to know about COVID-19. Oral Oncol. 2020 Jun; 105: 104741. https://doi.org/10.1016/j.oraloncology.2020.104741
4. Chen L, Zhao J, Peng J, Li X, Deng X, Geng Z, Shen Z, Guo F, Zhang Q, Jin Y, Wang L, Wang S. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif. 2020 Dec; 53(12): e12923. https://doi.org/10.1111/cpr.12923
5. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C, Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020 Aug; 383(6): 590-592. https://doi.org/10.1056/NEJMc2011400.
6. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J. SARS-CoV-2 Viral Load in Upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar; 382(12): 1177-1179. https://doi.org/10.1056/NEJMc2001737.
7. Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci Technol. 2020 Apr; 0(0): 1-4. https://doi.org/10.1080/02786826.2020.1749229.
8. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. medRxiv [Preprint]. 2020 Mar 13: 2020.03.09.20033217. https://doi.org/10.1101/2020.03.09.20033217. Update in: N Engl J Med. 2020 Apr; 382(16): 1564-1567.
9. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004 Jun; 203(2): 631-637. https://doi.org/10.1002/path.1570.
10. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, van der Voort PH, Mulder DJ, van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020 Jul; 251(3): 228-248. https://doi.org/10.1002/path.5471.
11. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020 Feb; 12(1): 8. https://doi.org/10.1038/s41368-020-0074-x.
12. Song J, Li Y, Huang X, Chen Z, Li Y, Liu C, Chen Z, Duan X. Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2. J Med Virol. 2020 Nov; 92(11): 2556-2566. https://doi.org/10.1002/jmv.26045.
13. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020 Feb; 395(10225): 689-697. https://doi.org/10.1016/S0140-6736(20)30260-9.
14. Anfinrud P, Bax CE, Stadnytskyi V, Bax A. Could SARS-CoV-2 be transmitted via speech droplets? medRxiv [Preprint]. 2020 Apr: 2020.04.02.20051177. https://doi.org/10.1101/2020.04.02.20051177.
15. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020 May; 368(6490): 489-493. https://doi.org/10.1126/science.abb3221.
16. O'Donnell VB, Thomas D, Stanton R, Maillard JY, Murphy RC, Jones SA, Humphreys I, Wakelam MJO, Fegan C, Wise MP, Bosch A, Sattar SA. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function (Oxf). 2020; 1(1): zqaa002. https://doi.org/10.1093/function/zqaa002.
17. Mantlo E, Evans A, Patterson-Fortin L, Boutros J, Smith R, Paessler S. Efficacy of a novel iodine complex solution, CupriDyne, in inactivating SARS-CoV-2. bioRxiv [Preprint]. 2020 May 8:2020.05.08.082701. https://doi.org/10.1101/2020.05.08.082701.
18. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb; 382(8): 727-733. https://doi.org/10.1056/NEJMoa2001017.
19. WHO WHO. WHO announces COVID-19 outbreak a pandemic. 2020.
20. Huang L, Zhang X, Zhang X, Wei Z, Zhang L, Xu J, Liang P, Xu Y, Zhang C, Xu A. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J Infect. 2020 Jun; 80(6): e1-e13. https://doi.org/10.1016/j.jinf.2020.03.006.
21. Chen L, Zhao J, Peng J, Li X, Deng X, Geng Z, Shen Z, Guo F, Zhang Q, Jin Y, Wang L, Wang S. Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif. 2020 Dec; 53(12): e12923. https://doi.org/10.1111/cpr.12923.
22. Cheng VCC, Wong SC, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, Sridhar S, Chan JFW, Ho PL, Yuen KY. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020 May; 41(5): 493-498. https://doi.org/10.1017/ice.2020.58.
23. Noh JY, Yoon JG, Seong H, Choi WS, Sohn JW, Cheong HJ, Kim WJ, Song JY. Asymptomatic infection and atypical manifestations of COVID-19: Comparison of viral shedding duration. J Infect. 2020 Nov; 81(5):8 16-846. https://doi.org/10.1016/j.jinf.2020.05.035.
24. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr; 92(4): 418-423. https://doi.org/10.1002/jmv.25681. Erratum in: J Med Virol. 2020 Oct; 92(10): 2249.
25. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Jul; 75(7): 1730-1741. https://doi.org/10.1111/all.14238.
26. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O'Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020 Jul; 75(7): 1564-1581. https://doi.org/10.1111/all.14364.
27. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, Yang J, Ye G, Cheng Z. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020 Jul; 92(7): 833-840. https://doi.org/10.1002/jmv.25825.
28. Dong X, Cao YY, Lu XX, Zhang JJ, Du H, Yan YQ, Akdis CA, Gao YD. Eleven faces of coronavirus disease 2019. Allergy. 2020 Jul; 75(7): 1699-1709. https://doi.org/10.1111/all.14289.
29. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020 Apr 14; 323(14): 1406-1407. https://doi.org/10.1001/jama.2020.2565.
30. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer T, Thiel V, Janke C, Guggemos W, Seilmaier M, Drosten C, Vollmar P, Zwirglmaier K, Zange S, Wölfel R, Hoelscher M. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020 Mar 5;382(10):970-971. https://doi.org/10.1056/NEJMc2001468.
31. Meng L, Hua F, Bian Z. Coronavirus Disease 2019 (COVID-19): Emerging and Future Challenges for Dental and Oral Medicine. J Dent Res. 2020 May; 99(5): 481-487. https://doi.org/10.1177/0022034520914246.
32. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. Emerg Infect Dis. 2006 Dec; 12(12): 1834-1840. https://doi.org/10.3201/eid1212.060401.
33. Siddell SG, Walker PJ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, Gorbalenya AE, Harrach B, Harrison RL, Junglen S, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Nibert M, Rubino L, Sabanadzovic S, Sanfaçon H, Simmonds P, Varsani A, Zerbini FM, Davison AJ. Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Arch Virol. 2019 Mar; 164(3): 943-946. https://doi.org/10.1007/s00705-018-04136-2.
34. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018 Feb; 23(2): 130-137. https://doi.org/10.1111/resp.13196.
35. Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020 Feb; 91: 264-266. https://doi.org/10.1016/j.ijid.2020.01.009.
36. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006 Jun; 80(12): 5927-5940. https://doi.org/10.1128/JVI.02501-05.
37. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 2010 May; 6(5): e1000896. https://doi.org/10.1371/journal.ppat.1000896.
38. Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity. Front Microbiol. 2019 Aug; 10: 1813. https://doi.org/10.3389/fmicb.2019.01813.
39. Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and SARS-COV-2. Turk J Med Sci. 2020 Apr; 50(SI-1): 549-556. https://doi.org/10.3906/sag-2004-127.
40. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar; 367(6483): 1260-1263. https://doi.org/10.1126/science.abb2507.
41. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med. 2020 Ahead Of Print Jun; 28(2): 174-184.
42. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020 May; 78(4): 779-784.e5. https://doi.org/10.1016/j.molcel.2020.04.022.
43. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Adv Virus Res. 2016; 96: 29-57. https://doi.org/10.1016/bs.aivir.2016.08.004.
44. Cole-Jeffrey CT, Liu M, Katovich MJ, Raizada MK, Shenoy V. ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. J Cardiovasc Pharmacol. 2015 Dec; 66(6): 540-50. https://doi.org/10.1097/FJC.0000000000000307.
45. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020 May; 10(2): 1271. https://doi.org/10.4081/cp.2020.1271.
46. Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, Reiger M, Neumann AU, Lunjani N, Traidl-Hoffmann C, Nadeau KC, O'Mahony L, Akdis C, Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020 Nov; 75(11): 2829-2845. https://doi.org/10.1111/all.14429.
47. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L, Yang X, He L, Zhang L, Yang Z, Geng JJ, Chen R, Zhang H, Wang B, Zhu YM, Nan G, Jiang JL, Li L, Wu J, Lin P, Huang W, Xie L, Zheng ZH, Zhang K, Miao JL, Cui HY, Huang M, Zhang J, Fu L, Yang XM, Zhao Z, Sun S, Gu H, Wang Z, Wang CF, Lu Y, Liu YY, Wang QY, Bian H, Zhu P, Chen ZN. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020 Dec; 5(1): 283. https://doi.org/10.1038/s41392-020-00426-x
48. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020 Nov; 370(6518): 856-860. https://doi.org/10.1126/science.abd2985.
49. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002 Dec; 532(1-2): 107-110. https://doi.org/10.1016/s0014-5793(02)03640-2.
50. Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H, Jiang H, Zhou J, Lam P, Zhang L, Lackner A, Qin C, Chen Z. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol. 2011 Apr; 85(8): 4025-4030. https://doi.org/10.1128/JVI.02292-10.
51. Xu J, Li Y, Gan F, Du Y, Yao Y. Salivary Glands: Potential Reservoirs for COVID-19 Asymptomatic Infection. J Dent Res. 2020 Jul; 99(8): 989. https://doi.org/10.1177/0022034520918518.
52. Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol. 2020 Sep;108:104821. https://doi.org/10.1016/j.oraloncology.2020.104821.
53. Yu X, Sun S, Shi Y, Wang H, Zhao R, Sheng J. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care. 2020 Apr; 24(1): 170. https://doi.org/10.1186/s13054-020-02893-8.
54. To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, Lung DC, Tam AR, Poon RW, Fung AY, Hung IF, Cheng VC, Chan JF, Yuen KY. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis. 2020 Jul 28; 71(15): 841-843. https://doi.org/10.1093/cid/ciaa149.
55. Czumbel LM, Kiss S, Farkas N, Mandel I, Hegyi A, Nagy Á, Lohinai Z, Szakács Z, Hegyi P, Steward MC, Varga G. Saliva as a Candidate for COVID-19 Diagnostic Testing: A Meta-Analysis. Front Med (Lausanne). 2020 Aug; 7: 465. https://doi.org/10.3389/fmed.2020.00465.
56. Fernandes LL, Pacheco VB, Borges L, Athwal HK, de Paula Eduardo F, Bezinelli L, Correa L, Jimenez M, Dame-Teixeira N, Lombaert IMA, Heller D. Saliva in the Diagnosis of COVID-19: A Review and New Research Directions. J Dent Res. 2020 Dec; 99(13): 1435-1443. https://doi.org/10.1177/0022034520960070.
57. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020 May; 323(18): 1843-1844. https://doi.org/10.1001/jama.2020.3786.
58. Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev. 2020 Apr; 34(2): 75-80. https://doi.org/10.1016/j.tmrv.2020.02.003.
59. Badran Z, Gaudin A, Struillou X, Amador G, Soueidan A. Periodontal pockets: A potential reservoir for SARS-CoV-2? Med Hypotheses. 2020 Oct; 143: 109907. https://doi.org/10.1016/j.mehy.2020.109907.
60. Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA. 2020 May; 323(18): 1837-1838. https://doi.org/10.1001/jama.2020.4756.
61. Scharfman BE, Techet AH, Bush JWM, Bourouiba L. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp Fluids. 2016; 57(2): 24. https://doi.org/10.1007/s00348-015-2078-4.
62. Leggat PA, Kedjarune U. Bacterial aerosols in the dental clinic: a review. Int Dent J. 2001 Feb; 51(1): 39-44. https://doi.org/10.1002/j.1875-595x.2001.tb00816.x.
63. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, Yip CC, Cai JP, Chan JM, Chik TS, Lau DP, Choi CY, Chen LL, Chan WM, Chan KH, Ip JD, Ng AC, Poon RW, Luo CT, Cheng VC, Chan JF, Hung IF, Chen Z, Chen H, Yuen KY. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020 May; 20(5): 565-574. https://doi.org/10.1016/S1473-3099(20)30196-1.
64. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anaesth. 2020 May; 67(5): 568-576. https://doi.org/10.1007/s12630-020-01591-x.
65. Lindsley WG, Noti JD, Blachere FM, Szalajda JV, Beezhold DH. Efficacy of face shields against cough aerosol droplets from a cough simulator. J Occup Environ Hyg. 2014; 11(8): 509-518. https://doi.org/10.1080/15459624.2013.877591.
66. Yip L, Finn M, Granados A, Prost K, McGeer A, Gubbay JB, Scott J, Mubareka S. Influenza virus RNA recovered from droplets and droplet nuclei emitted by adults in an acute care setting. J Occup Environ Hyg. 2019 May; 16(5): 341-348. https://doi.org/10.1080/15459624.2019.1591626.
67. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A. 2020 Jun; 117(22): 11875-11877. https://doi.org/10.1073/pnas.2006874117.
68. Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality. PLoS One. 2012 Oct; 7(10): e46789. https://doi.org/10.1371/journal.pone.0046789.
69. Vejerano EP, Marr LC. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018 Feb; 15(139): 20170939. https://doi.org/10.1098/rsif.2017.0939.
70. Mohammed CI, Monserrate V. Preoperative oral rinsing as a means of reducing air contamination during use of air turbine handpieces. Oral Surg Oral Med Oral Pathol. 1970 Feb; 29(2): 291-4. https://doi.org/10.1016/0030-4220(70)90100-3.
71. Bennett AM, Fulford MR, Walker JT, Bradshaw DJ, Martin MV, Marsh PD. Microbial aerosols in general dental practice. Br Dent J. 2000 Dec; 189(12): 664-667. https://doi.org/10.1038/sj.bdj.4800859.
72. Marui VC, Souto MLS, Rovai ES, Romito GA, Chambrone L, Pannuti CM. Efficacy of preprocedural mouthrinses in the reduction of microorganisms in aerosol: A systematic review. J Am Dent Assoc. 2019 Dec; 150(12): 1015-1026.e1. https://doi.org/10.1016/j.adaj.2019.06.024.
73. U.S. Department of Labor. Occupational Safety and Health Administration. Guidance on Preparing Workplaces for COVID-19. 2020. https://www.osha.gov/Publications/OSHA3990.pdf.
74. Ahmed MA, Jouhar R, Ahmed N, Adnan S, Aftab M, Zafar MS, Khurshid Z. Fear and Practice Modifications among Dentists to Combat Novel Coronavirus Disease (COVID-19) Outbreak. Int J Environ Res Public Health. 2020 Apr; 17(8): 2821. https://doi.org/10.3390/ijerph17082821.
75. Martins-Filho PR, de Gois-Santos VT, Tavares CSS, de Melo EGM, do Nascimento-Júnior EM, Santos VS. Recommendations for a safety dental care management during SARS-CoV-2 pandemic. Rev Panam Salud Publica. 2020 Apr; 44: e51. https://doi.org/10.26633/RPSP.2020.51.
76. Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema B. Comparison of In Vitro Inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine Oral Antiseptic Rinses. J Prosthodont. 2020 Aug; 29(7): 599-603. https://doi.org/10.1111/jopr.13220.
77. Meister TL, Brüggemann Y, Todt D, Conzelmann C, Müller JA, Groß R, Münch J, Krawczyk A, Steinmann J, Steinmann J, Pfaender S, Steinmann E. Virucidal Efficacy of Different Oral Rinses Against Severe Acute Respiratory Syndrome Coronavirus 2. J Infect Dis. 2020 Sep; 222(8): 1289-1292. https://doi.org/10.1093/infdis/jiaa471.
78. Caruso AA, Del Prete A, Lazzarino AI, Capaldi R, Grumetto L. Might hydrogen peroxide reduce the hospitalization rate and complications of SARS-CoV-2 infection? Infect Control Hosp Epidemiol. 2020 Nov; 41(11): 1360-1361. https://doi.org/10.1017/ice.2020.170.
79. Xu C, Wang A, Hoskin ER, Cugini C, Markowitz K, Chang TL, Fine DH. Differential effects of antiseptic mouth rinses on SARS-CoV-2 infectivity in vitro. bioRxiv [Preprint]. 2020 Dec 1:2020.12.01.405662. https://doi.org/10.1101/2020.12.01.405662.
80. Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema B. Rapid In-Vitro Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Using Povidone-Iodine Oral Antiseptic Rinse. J Prosthodont. 2020 Jul; 29(6): 529-533. https://doi.org/10.1111/jopr.13209.
81. Anderson DE, Sivalingam V, Kang AEZ, Ananthanarayanan A, Arumugam H, Jenkins TM, Hadjiat Y, Eggers M. Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease. Infect Dis Ther. 2020 Sep; 9(3): 669-675. https://doi.org/10.1007/s40121-020-00316-3.
82. Martínez Lamas L, Diz Dios P, Pérez Rodríguez MT, Del Campo Pérez V, Cabrera Alvargonzalez JJ, López Domínguez AM, Fernandez Feijoo J, Diniz Freitas M, Limeres Posse J. Is povidone iodine mouthwash effective against SARS-CoV-2? First in vivo tests. Oral Dis. 2020 Jul: 10.1111/odi.13526. https://doi.org/10.1111/odi.13526.
83. Izzetti R, Nisi M, Gabriele M, Graziani F. COVID-19 Transmission in Dental Practice: Brief Review of Preventive Measures in Italy. J Dent Res. 2020 Aug; 99(9): 1030-1038. https://doi.org/10.1177/0022034520920580.
84. Seneviratne CJ, Balan P, Ko KKK, Udawatte NS, Lai D, Ng DHL, Venkatachalam I, Lim KS, Ling ML, Oon L, Goh BT, Sim XYJ. Efficacy of commercial mouth-rinses on SARS-CoV-2 viral load in saliva: randomized control trial in Singapore. Infection. 2020 Dec; 14: 1–7. https://doi.org/10.1007/s15010-020-01563-9
85. Toothpaste and mouthwash inactivate 99.9% of the virus that causes COVID-19. Br Dent J. 2020 Dec; 229(11): 753. https://doi.org/10.1038/s41415-020-2476-8
86. Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, Noh JY, Cheong HJ, Kim WJ. Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. J Korean Med Sci. 2020 May; 35(20): e195. https://doi.org/10.3346/jkms.2020.35.e195.
87. Dexter F, Parra MC, Brown JR, Loftus RW. Perioperative COVID-19 Defense: An Evidence-Based Approach for Optimization of Infection Control and Operating Room Management. Anesth Analg. 2020 Jul; 131(1): 37-42. https://doi.org/10.1213/ANE.0000000000004829.
88. Marshall MV, Cancro LP, Fischman SL. Hydrogen peroxide: a review of its use in dentistry. J Periodontol. 1995 Sep;66(9):786-796. https://doi.org/10.1902/jop.1995.66.9.786.
89. Jaimes EA, Sweeney C, Raij L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension. 2001 Oct; 38(4): 877-883.
90. Drosou A, Falabella A, Kirsner S. Antiseptics on wounds : an area of controversy. Wounds. 2003 May; 15(6): 149-166.
91. Russell AD. Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev. 1990 Apr; 3(2): 99-119. https://doi.org/10.1128/cmr.3.2.99.
92. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020 Mar; 104(3): 246-251. https://doi.org/10.1016/j.jhin.2020.01.022.
93. Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005 Jan; 194(1-2): 1-6. https://doi.org/10.1007/s00430-004-0219-0.
94. Saknimit M, Inatsuki I, Sugiyama Y, Yagami K. Virucidal efficacy of physico-chemical treatments against coronaviruses and parvoviruses of laboratory animals. Jikken Dobutsu. 1988 Jul; 37(3): 341-345. https://doi.org/10.1538/expanim1978.37.3_341.
95. Omidbakhsh N, Sattar SA. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. Am J Infect Control. 2006 Jun; 34(5): 251-257. https://doi.org/10.1016/j.ajic.2005.06.002.
96. Koarai A, Sugiura H, Yanagisawa S, Ichikawa T, Minakata Y, Matsunaga K, Hirano T, Akamatsu K, Ichinose M. Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol. 2010 Jun; 42(6): 651-60. https://doi.org/10.1165/rcmb.2008-0345OC.
97. König B, Reimer K, Fleischer W, König W. Effects of Betaisodona on parameters of host defense. Dermatology. 1997; 195 Suppl 2: 42-8. https://doi.org/10.1159/000246029.
98. Schreier H, Erdos G, Reimer K, König B, König W, Fleischer W. Molecular effects of povidone-iodine on relevant microorganisms: an electron-microscopic and biochemical study. Dermatology. 1997; 195 Suppl 2: 111-6. https://doi.org/10.1159/000246043.
99. Sriwilaijaroen N, Wilairat P, Hiramatsu H, Takahashi T, Suzuki T, Ito M, Ito Y, Tashiro M, Suzuki Y. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virol J. 2009 Aug; 6: 124. https://doi.org/10.1186/1743-422X-6-124.
100. Eggers M. Infectious Disease Management and Control with Povidone Iodine. Infect Dis Ther. 2019 Dec; 8(4): 581-593. https://doi.org/10.1007/s40121-019-00260-x.
101. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In Vitro Bactericidal and Virucidal Efficacy of Povidone-Iodine Gargle/Mouthwash Against Respiratory and Oral Tract Pathogens. Infect Dis Ther. 2018 Jun; 7(2): 249-259. https://doi.org/10.1007/s40121-018-0200-7.
102. Eggers M, Koburger-Janssen T, Ward LS, Newby C, Müller S. Bactericidal and Virucidal Activity of Povidone-Iodine and Chlorhexidine Gluconate Cleansers in an In Vivo Hand Hygiene Clinical Simulation Study. Infect Dis Ther. 2018 Jun; 7(2): 235-247. https://doi.org/10.1007/s40121-018-0202-5.
103. Eggers M, Eickmann M, Zorn J. Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA). Infect Dis Ther. 2015 Dec; 4(4): 491-501. https://doi.org/10.1007/s40121-015-0091-9.
104. Kunisada T, Yamada K, Oda S, Hara O. Investigation on the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology. 1997; 195 Suppl 2: 14-8. https://doi.org/10.1159/000246025.
105. Kawana R, Kitamura T, Nakagomi O, Matsumoto I, Arita M, Yoshihara N, Yanagi K, Yamada A, Morita O, Yoshida Y, Furuya Y, Chiba S. Inactivation of human viruses by povidone-iodine in comparison with other antiseptics. Dermatology. 1997; 195 Suppl 2: 29-35. https://doi.org/10.1159/000246027.
106. Ito H, Ito T, Hikida M, Yashiro J, Otsuka A, Kida H, Otsuki K. Outbreak of highly pathogenic avian influenza in Japan and anti-influenza virus activity of povidone-iodine products. Dermatology. 2006; 212 Suppl 1: 115-118. https://doi.org/10.1159/000089210.
107. Kariwa H, Fujii N, Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology. 2006; 212 Suppl 1(Suppl 1): 119-123. https://doi.org/10.1159/000089211.
108. Liang B, Yuan X, Wei G, Wang W, Zhang M, Peng H, Javer A, Mendenhall M, Julander J, Huang S, Michail H, Lu Y, Zhu Q, Baldwin J. In-Vivo Toxicity Studies and In-Vitro Inactivation of SARS-CoV-2 by Povidone-iodine In-situ Gel Forming Formulations. bioRxiv [Preprint]. 2020 May: 2020.05.18.103184. https://doi.org/10.1101/2020.05.18.103184.
109. Shiraishi T, Nakagawa Y. Evaluation of the bactericidal activity of povidone-iodine and commercially available gargle preparations. Dermatology. 2002; 204 Suppl 1: 37-41. https://doi.org/10.1159/000057723.
110. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020 Mar; 12(1): 9. https://doi.org/10.1038/s41368-020-0075-9.
111. Simchowitz L, De Weer P. Chloride movements in human neutrophils. Diffusion, exchange, and active transport. J Gen Physiol. 1986 Aug; 88(2): 167-194. https://doi.org/10.1085/jgp.88.2.167.
112. Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem. 2006 Dec; 281(52): 39860-39869. https://doi.org/10.1074/jbc.M605898200.
113. McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol. 2005 Jan; 79(1): 17-27. https://doi.org/10.1128/JVI.79.1.17-27.2005.
114. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb; 320(6): 365-376. https://doi.org/10.1056/NEJM198902093200606.
115. Ishihara M, Murakami K, Fukuda K, Nakamura S, Kuwabara M, Hattori H, Fujita M, Kiyosawa T, Yokoe H. Stability of Weakly Acidic Hypochlorous Acid Solution with Microbicidal Activity. Biocontrol Sci. 2017; 22(4): 223-227. https://doi.org/10.4265/bio.22.223.
116. Chesney JA, Eaton JW, Mahoney JR Jr. Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol. 1996 Apr; 178(7): 2131-2135. https://doi.org/10.1128/jb.178.7.2131-2135.1996.
117. Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A. A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep. 2019 Jan; 9(1): 1015. https://doi.org/10.1038/s41598-018-37703-3.
118. Ramalingam S, Cai B, Wong J, Twomey M, Chen R, Fu RM, Boote T, McCaughan H, Griffiths SJ, Haas JG. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep. 2018 Sep; 8(1): 13630. https://doi.org/10.1038/s41598-018-31936-y.
119. Satomura K, Kitamura T, Kawamura T, Shimbo T, Watanabe M, Kamei M, Takano Y, Tamakoshi A; Great Cold Investigators-I. Prevention of upper respiratory tract infections by gargling: a randomized trial. Am J Prev Med. 2005 Nov; 29(4): 302-307. https://doi.org/10.1016/j.amepre.2005.06.013.
120. Yamada H, Takuma N, Daimon T, Hara Y. Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: a prospective clinical study. J Altern Complement Med. 2006 Sep; 12(7): 669-672. https://doi.org/10.1089/acm.2006
121. Noda T, Ojima T, Hayasaka S, Murata C, Hagihara A. Gargling for oral hygiene and the development of fever in childhood: a population study in Japan. J Epidemiol. 2012; 22(1): 45-49. https://doi.org/10.2188/jea.je20100181.
122. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005; 99(4): 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x.
123. Van der Weijden FA, Van der Sluijs E, Ciancio SG, Slot DE. Can Chemical Mouthwash Agents Achieve Plaque/Gingivitis Control? Dent Clin North Am. 2015 Oct; 59(4): 799-829. https://doi.org/10.1016/j.cden.2015.06.002.
124. Alvarez DM, Duarte LF, Corrales N, Smith PC, González PA. Cetylpyridinium chloride blocks herpes simplex virus replication in gingival fibroblasts. Antiviral Res. 2020 Jul; 179: 104818. https://doi.org/10.1016/j.antiviral.2020.104818.
125. Popkin DL, Zilka S, Dimaano M, Fujioka H, Rackley C, Salata R, Griffith A, Mukherjee PK, Ghannoum MA, Esper F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog Immun. 2017; 2(2): 252-269. https://doi.org/10.20411/pai.v2i2.200.
126. Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA, Salata RA. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis. 2017 Jan; 17(1): 74. https://doi.org/10.1186/s12879-016-2177-8
127. Seo HW, Seo JP, Cho Y, Ko E, Kim YJ, Jung G. Cetylpyridinium chloride interaction with the hepatitis B virus core protein inhibits capsid assembly. Virus Res. 2019 Apr; 263: 102-111. https://doi.org/10.1016/j.virusres.2019.01.004.
128. Baker N, Williams AJ, Tropsha A, Ekins S. Repurposing Quaternary Ammonium Compounds as Potential Treatments for COVID-19. Pharm Res. 2020 May; 37(6): 104. https://doi.org/10.1007/s11095-020-02842-8.
129. Davies GE, Francis J, Martin AR, Rose FL, Swain G. 1:6-Di-4'-chlorophenyldiguanidohexane (hibitane); laboratory investigation of a new antibacterial agent of high potency. Br J Pharmacol Chemother. 1954 Jun; 9(2): 192-196. https://doi.org/10.1111/j.1476-5381.1954.tb00840.x.
130. Bascones A, Morante S, Mateos L, Mata M, Poblet J. Influence of additional active ingredients on the effectiveness of non-alcoholic chlorhexidine mouthwashes: a randomized controlled trial. J Periodontol. 2005 Sep; 76(9): 1469-1475. https://doi.org/10.1902/jop.2005.76.9.1469.
131. Gunsolley JC. Clinical efficacy of antimicrobial mouthrinses. J Dent. 2010 Jun; 38 Suppl 1: S6-10. https://doi.org/10.1016/S0300-5712(10)70004-X.
132. Rölla G, Melsen B. On the mechanism of the plaque inhibition by chlorhexidine. J Dent Res. 1975 Jun; 54 Spec No B: B57-62. https://doi.org/10.1177/00220345750540022601.
133. Wood A, Payne D. The action of three antiseptics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect. 1998 Apr; 38(4): 283-295. https://doi.org/10.1016/s0195-6701(98)90077-9.
134. Bernstein D, Schiff G, Echler G, Prince A, Feller M, Briner W. In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res. 1990 Mar; 69(3): 874-876. https://doi.org/10.1177/00220345900690030901.
135. Baqui AA, Kelley JI, Jabra-Rizk MA, Depaola LG, Falkler WA, Meiller TF. In vitro effect of oral antiseptics on human immunodeficiency virus-1 and herpes simplex virus type 1. J Clin Periodontol. 2001 Jul; 28(7): 610-616. https://doi.org/10.1034/j.1600-051x.2001.028007610.x.
Cómo citar
Suárez Londoño, L. J., Martínez Pabón , M. C., Arce Muñoz, R. M., & Rodríguez Ciódaro, A. (2020). Riesgo de transmisión del SARS-CoV-2 y descontaminación oral: escasa evidencia aunque prometedor futuro. Universitas Odontologica, 39. https://doi.org/10.11144/Javeriana.uo39.scvt
Sección
Práctica Clínica

Artículos más leídos del mismo autor/a

1 2 > >>