Publicado oct 28, 2013



PLUMX
Google Scholar
 
Search GoogleScholar


Lorenza María Jaramillo Gómez

Nelly Stella Roa Molina

Margarita Chaves Clavijo

Camilo Durán Correa

##plugins.themes.bootstrap3.article.details##

Resumen

El presente artículo analiza la evidencia científica disponible acerca del uso de ratas y ratones en la investigación de caries dental. En el estudio de la caries dental ha contribuido decisivamente al entendimiento de su etiología y patogenia. Desde 1922, cuando se diseñaron los primeros experimentos in vivo para confirmar las observaciones en humanos, y hasta la fecha, la rata sigue siendo el modelo animal más usado para este propósito. El objetivo de los primeros experimentos se orientó a encontrar la asociación entre las fórmulas alimenticias y el grado de las lesiones cariosas. Sin embargo, los resultados experimentales no pudieron comprobar esta correlación, pero sí permitieron establecer la asociación entre microrganismos propios de la flora oral y la caries, y reconocer que, debido a su acidogenicidad, el principal microrganismo cariogénico es el Streptococcus mutans. El modelo de rata y ratón también ha sido fundamental en el estudio de las relaciones existentes entre algunas condiciones sistémicas y la caries. Recientemente, la disponibilidad de cepas de roedores modificados genéticamente impulsa el avance del desarrollo de vacunas de ADN anticaries, mientras que el principal enfoque tendiente a reducir su incidencia mundialmente se sigue concentrando en el desarrollo de terapias para prevenir su aparición.

 

This article analyzes available scientific evidence about the use of rats and mice to study dental caries. In the study of dental caries, the use of mice and rats has greatly contributed to understand the etiology and pathogenesis of this condition. Since 1922, when the first in vivo experiments were designed to confirm human observations, the rat has been the most widely used animal model. The objective of the first experimental designs was aimed at establishing the relationship between diet formulations and the degree of carious lesions. However, results failed to demonstrate this correlation and, instead, they have proved a definite association between the presence of endogenous oral microorganisms and dental caries, recognizing Streptococcus mutans as the primary etiologic agent due, in part, to its acidogenic capacity. The mouse and rat models have also played a major role in understanding relationships between systemic conditions and caries. Recently the use of genetically modified strains has favored the development of DNA anti-caries vaccines, but the principal approach for decreasing its worldwide incidence is still focused on prevention.

Keywords
References
1. Inaba E, Uematsu H, Nishiyama Y, Watanabe H, Senpuku H. The role of anti-PAc (361-386) peptide SIgA antibody in professional oral hygiene of the elderly. Gerodontol. 2009 Dec; 26(4): 259-67.
2. Jaramillo L. Metabolismo de los microorganismos asociados a la caries. Univ Odontol. 2000 May; 20(Suppl 1): 49-55.
3. Dinis M, Tavares D, Veiga-Malta I, Fonseca AJ, Andrade EB, Trigo G, Ribeiro A, Videira A, Cabrita AM, Ferreira P. Oral therapeutic vaccination with Streptococcus sobrinus recombinant enolase confers protection against dental caries in rats. J Infect Dis. 2009 Jan; 199(1): 116-23.
4. Klein MI, Scott-Anne KM, Gregoire S, Rosalen PL, Koo H. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol Oral Microbiol. 2012 Oct; 27(5): 350-61.
5. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod. 2009 Mar; 80(3): 503-10.
6. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959.
7. Stephens ML. Personal reflections on Russell and Burch, FRAME, and the HSUS. Altern Lab Anim. 2009 Dec; 37(Suppl 2): 29-33.
8. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academic Press; 2011.
9. Pyczak T. [Notification for intended animal research - remarks on the future procedures on the basis of the European Union Laboratory Animal Guideline 2010/63/EU]. Berl Munch Tierarztl Wochenschr. 2011 Sep-Oct; 124(9-10): 376-81.
10. Krinke G. The laboratory rat. London, UK: Academic Press; 2000.
11. Castle WE. The domestication of the rat. Proc Natl Acad Sci U S A. 1947 May; 33(5): 109-17.
12. Bowen WH. Rodent model in caries research. Odontology. 2013 Jan; 101(1): 9-14.
13. Klinger IJ, Gies WJ. Chemical studies of the relations of oral microorganisms to dental caries III: A biochemical study and differentiation of oral bacteria, with special reference to dental caries. J. Allied Dent Soc. 1915; 10: 445-58.
14. Hoppert CA, Webber PA, Canniff TL. The production of dental caries in rats fed an adequate diet. J Dent Res. Feb 1932; 12(1): 161-73.
15. Rosebury T, Karshan M, Foley G. Studies, in the rat, of susceptibility to dental caries: III. The experimental production of typical dental fissure-caries and other lesions in rats, and preliminary studies of their etiology. J Dent Res. 1933; 13: 379-98.
16. Harrison RW. Bacteriological studies on experimental dental caries in the rat: I. Bacterial flora of normal, non-carious teeth. J Infect Dis. 1940; 67(2): 91-6.
17. Harrison RW. Bacteriological studies on experimental dental caries in the rat: II. Changes in tooth surface flora associated with development and inhibition, of dental caries. J Infect Dis. 1940; 67(2): 97-105.
18. Harrison RW. Bacteriological studies on experimental dental caries in the rat: III. Flora of advanced carious lesions. J Infect Dis. 1940; 67(2): 106-12.
19. Kite OW, Shaw JH, Sognnaes RF. The prevention of experimental tooth decay by tube-feeding. J Nutr. 1950 Sep; 42(1): 89-105.
20. Orland FJ, Blayney JR, Harrison RW, Reyniers JA, Trexler PC, Wagner M, Gordon HA, Luckey TD. Use of the germfree animal technic in the study of experimental dental caries. I. Basic observations on rats reared free of all microorganisms. J Dent Res. 1954 Apr; 33(2): 147-74.
21. Karmin BB. The effects of a high carbohydrate diet on the teeth of para-biosed albino rats. J Dent Res. 1954 Apr; 33(2): 175-80.
22. Wynn W, Haldi J, Bentley KD, Law ML. Dental caries in the albino rat in relation to the chemical composition of the teeth and of the diet. II. Variations in the Ca/P ratio of the diet induced by changing the phosphorus content. J Nutr. 1956 Mar 10; 58(3): 325-33.
23. Herzog E, König KG, Schmid R. The influence of different carbohydrates, of drinking, and of toothbrushing on oral sugar clearance in Osborne-Mendel rats. Helv Odontol Acta. 1966 Oct; 10(2): 114-20.
24. Fitzgerald RJ, Keyes PH. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc. 1960; 61: 9-19.
25. Gibbons RJ, Berman KS, Knoettner P, Kapsimalis B. Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule forming streptococci of human origin. Arch Oral Biol. 1966 Jun; 11(6): 549-60.
26. Gamboa F, Chaves M, Estupiñán M, Galindo A. Detección de mutacinas en biotipos de cepas S. mutans aisladas de niños preescolares con y sin caries dental. Univ Odontol. 2006 Jun-Dic; 25(57): 7-13.
27. Kuramitsu H. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med. 1993; 4: 159-76.
28. Slee AM, Tanzer JM. Sucrose transport by Streptococcus mutans: Evidence for multiple transport systems. Biochim Biophys Acta. 1982 Nov 22; 692(3): 415-24.
29. Tanzer JM, Thompson A, Wen ZT, Burne RA. Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J Dent Res. 2006 Apr; 85(4): 369-73.
30. Quivey RG Jr, Kuhnert WL, Hahn K. Adaptation of oral streptococci to low pH. Adv Microb Physiol. 2000; 42: 239-74.
31. Gmür R, Giertsen E, van der Veen MH, de Josselin de Jong E, ten Cate JM, Guggenheim B. In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization. Clin Oral Investig. 2006 Sep; 10(3): 187-95.
32. Thurnheer T, Giertsen E, Gmür R, Guggenheim B. Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison. J Appl Microbiol. 2008 Sep; 105(3): 829-36.
33. Tanzer JM, Thompson A, Sharma K, Vickerman MM, Haase EM, Scannapieco FA. Streptococcus mutans out-competes Streptococcus gordonii in vivo. J Dent Res. 2012 May; 91(5): 513-9.
34. Aikawa C, Furukawa N, Watanabe T, Minegishi K, Furukawa A, Eishi Y, Oshima K, Kurokawa K, Hattori M, Nakano K, Maruyama F, Nakagawa I, Ooshima T. Complete genome sequence of the serotype k Streptococcus mutans strain LJ23. J Bacteriol. 2012 May; 194(10): 2754-5.
35. Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 2002 Oct; 99(22): 14434-9.
36. Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, Nomura R, Kawabata S, Ooshima T, Nakai K, Hattori M, Hamada S, Nakagawa I. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics. 2009 Aug; 10: 358.
37. Biswas S, Biswas I. Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain. J Bacteriol. 2012 Sep; 194(17): 4787-8.
38. Fukuzato Y, Matsuura T, Ozaki K, Matsuura M, Sano T, Nakahara Y, Kodama Y, Nakagawa A, Okamura S, Suido H, Torii K, Makino T, Narama I. Morphological study on dental caries induced in WBN/KobSlc rats (Rattus norvegicus) fed a standard laboratory diet. Lab Anim. 2009 Oct; 43(4): 376-81.
39. Taylor GW, Manz MC, Borgnakke WS. Diabetes, periodontal diseases, dental caries, and tooth loss: a review of the literature. Compend Contin Educ Dent. 2004 Mar; 25(3): 179-84, 186-8, 190.
40. Nakama K, Shichinohe K, Kobayashi K, Naito K, Uchida O, Yasuhara K, Tobe M. Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat. 1985; 22: 335-42.
41. Hintao J, Teanpaisan R, Chongsuvivatwong V, Dahlen G, Rattarasarn C. Root surface and coronal caries in adults with type 2 diabetes mellitus. Community Dent Oral Epidemiol. 2007; 35: 302-9.
42. Kodama Y, Matsuura M, Sano T, Nakahara Y, Ozaki K, Narama I, Matsuura T. Diabetes enhances dental caries and apical periodontitis in caries-susceptible WBN/KobSlc rats. Comp Med. 2011 Feb; 61(1): 53-9.
43. Gutowska I, Baranowska-Bosiacka I, Rybicka M, Noceń I, Dudzińska W, Marchlewicz M, Wiszniewska B, Chlubek D. Changes in the concentration of microelements in the teeth of rats in the final stage of type 1 diabetes, with an absolute lack of insulin. Biol Trace Elem Res. 2011 Mar; 139(3): 332-40.
44. Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B, Schulz R. Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol. 2008 Dec; 155(8): 1174-84.
45. Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2þ homeostasis in rat heart. Diabetes. 2005 Nov; 54(11): 3082-8.
46. Akpata ES, Alomari Q, Mojiminiyi OA, Al-Sanae H. Caries experience among children with type 1 diabetes in Kuwait. Pediatr Dent. 2012; 34(7): 468-72.
47. Abdus Salam M, Matsumoto N, Matin K, Tsuha Y, Nakao R, Hanada N, Senpuku H. Establishment of an animal model using recombinant NOD.B10.D2 mice to study initial adhesion of oral streptococci. Clin Diagn Lab Immunol. 2004 Mar; 11(2): 379-86.
48. Ito T, Maeda T, Senpuku H. Roles of salivary components in Streptococcus mutans colonization in a new animal model using NOD/SCID.e2f1-/- mice. PLoS One. 2012; 7(2): e32063.
49. Quinton PM. Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev. 1999 Jan; 79(Suppl 1): S3-S22.
50. Aps JK, Delanghe J, Martens LC. Salivary electrolyte concentrations are associated with cystic fibrosis transmembrane regulator genotypes. Clin Chem Lab Med. 2002 Apr; 40(4): 345-50.
51. Aps JK, Van Maele GO, Claeys G, Martens LC. Mutans streptococci, lactobacilli and caries experience in cystic fibrosis homozygotes, heterozygotes and healthy controls. Caries Res. 2001 Nov-Dec; 35(6): 407-11.
52. Catalán MA, Scott-Anne K, Klein MI, Koo H, Bowen WH, Melvin JE. Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS One. 2011 Jan 31; 6(1): e16549.
53. Webman H, Hill TJ, Kniesner AH. The effect of penicillin on dental caries in rats fed on a coarse corn diet. J Dent Res. 1949 Jun; 28(3): 258-62.
54. Abhyankar S, Sandham HJ, Chan KH. Serotype c Streptococcus mutans mutatable to lactate dehydrogenase deficiency. J Dent Res. 1985 Nov; 64(11): 1267-71.
55. Fitzgerald RJ, Adams BO, Sandham HJ, Abhyanker S. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats. Infect. Immun. 1989 Mar; 57(3): 823-6.
56. Murata RM, Branco-de-Almeida LS, Franco EM, Yatsuda R, dos Santos MH, de Alencar SM, Koo H, Rosalen PL. Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling. 2010 Oct; 26(7): 865-72.
57. Branco-de-Almeida LS, Murata RM, Franco EM, dos Santos MH, de Alencar SM, Koo H, Rosalen PL. Effects of 7-epiclusianone on Streptococcus mutans and caries development in rats. Planta Med. 2011 Jan; 77(1): 40-5.
58. Baptista A, Kato IT, Prates RA, Suzuki LC, Raele MP, Freitas AZ, Ribeiro MS. Antimicrobial photodynamic therapy as a strategy to arrest enamel demineralization: a short-term study on incipient caries in a rat model. Photochem Photobiol. 2012 May-Jun; 88(3): 584-9.
59. Yang J, Liu T, Li J. [Study on potential anti-caries DNA vaccine pcDNA3-gtfB integration into host cell genome]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2003 Jun; 21(3): 228-30.
60. Guo JH, Jia R, Fan MW, Bian Z, Chen Z, Peng B. Construction and immunogenic characterization of a fusion anti-caries DNA vaccine against PAc and glucosyltransferase I of Streptococcus mutans. J Dent Res. 2004 Mar; 83(3): 266-70.
61. Liu C, Fan M, Xu Q, Li Y. Biodistribution and expression of targeted fusion anti-caries DNA vaccine pGJA-P/VAX in mice. J Gene Med. 2008 Mar; 10(3): 298-305.
62. Lui GX, Xu QA, Jin J, Li YH, Jia R, Guo JH, Fan Mw. Mucosal and systemic immunization with targeted fusion anti-caries DNA plasmid in young rats. Vaccine. 2009 May 14; 27(22): 2940-7.
63. Featherstone JD, Stookey GK, Kaminski MA, Faller RV. Recommendation for a non-animal alternative to rat caries testing. Am J Dent. 2011 Oct; 24(5): 289-94.
Cómo citar
Jaramillo Gómez, L. M., Roa Molina, N. S., Chaves Clavijo, M., & Durán Correa, C. (2013). Uso de ratas y ratones en el estudio de la caries dental / Use of Rats and Mice for the Study of Dental Caries. Universitas Odontologica, 32(69), 35–48. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/SICI%3A%202027-3444%28201307%2932%3A69%3C35%3AURRECD%3E2.0.CO%3B2-2
Sección
Dossier Temático

Artículos más leídos del mismo autor/a

<< < 1 2