Publicado Oct 29, 2013



PLUMX
Google Scholar
 
Search GoogleScholar
Descargas


Lorenza María Jaramillo Gómez

Camilo Durán Correa

##plugins.themes.bootstrap3.article.details##

Resumen

Background: The use of Lewis inbred rats in embryonic tissue transplantation experiments can present a challenge because of the fertility problems associated with the strain that require large production colonies to harvest sufficient tissue for the experiments, but this practice goes against the principle of reduction. Purpose: In order to maximize the fertilization of apt females an intrauterine artificial insemination technique (IUAI) was standardized in a Sprague Dawley outbred strain and later applied to the Lewis inbred colony. Methods: 41 Lewis rats to which estral stage determination was performed by impedance reading of the vaginal wall were inseminated. A midventral laparotomy was performed, the ovarian third of both uterine horns were located and gently elevated, and 350 μl of spermatozoid/0.9% saline solution were injected in each horn. Results: Even though the IUAI proved to be effective for use in outbred Sprague Dawley rats under these experimental conditions (average 5.08 embryos) at the time of sacrifice only 12 Lewis females (29.3%) were carrying embryos and the average embryos collected per female were 2.3. Conclusion: When the intrauterine artificial insemination technique was applied to the Lewis strain the number of pregnant females or the average embryo yield did not increase when compared to natural mating and therefore we do not recommend its use for this purpose.

 

Antecedentes: El uso de ratas endocriadas Lewis en experimentos de trasplantes puede representar un reto, por los problemas de fertilidad asociados con esta cepa, que implican mantener colonias de producción grandes, a fin de poder recolectar suficiente tejido para usar en los experimentos; sin embargo, esta práctica va contra el principio de reducción. Propósito: Estandarizar el protocolo de inseminación artificial intrauterina (IAIU) en una cepa exocriada Sprague Dawley y posteriormente aplicarla en la colonia de ratas Lewis, para maximizar el número de hembras aptas fertilizadas. Métodos: Se inseminaron 41 ratas Lewis a las que se les había determinado el estro por medio de impedancia vaginal. Se realizó una laparotomía medioventral para localizar y exponer el tercio ovárico de los cuernos uterinos, los cuales fueron cuidadosamente elevados y 350 μl de una solución de espermatozoides/suero fisiológico al 0,9 % se inyectó en cada uno de los cuernos. Resultados: Bajo las condiciones experimentales presentes, la técnica de IAIU resultó efectiva en la cepa exocriada (promedio de 5,08 embriones). Al momento del sacrificio solo 12 hembras Lewis (29,3 %) eran portadoras de embriones con un promedio de 2,3 embriones por hembra. Conclusión: Cuando se aplicó la técnica de inseminación artificial intrauterina a la cepa de ratas Lewis, el número de hembras preñadas o el promedio de embriones no aumentó en comparación con los resultados obtenidos por medio de cruces naturales. Por consiguiente, no recomendamos la aplicación de esta técnica para el propósito planteado.

Keywords
References
1. Günther E, Walter L. The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics. Sep 2001; 53(7): 520-42.
2. Zimmermann F, Weiss J, Reifenberg K. Breeding and assisted reproduction techniques. In: Krinke GJ, editor. The laboratory rat. London: Academic Press; 2000. pp. 177-98.
3. Türk G, Sönmez M, Aydin M, Yüce A, Gür S, Yüksel M, Aksu EH, Aksoy H. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr. 2008 Apr; 27(2): 289-96.
4. Zúniga JM. Principios de bienestar aplicados a la experimentación animal. In: Recuerda P, Moyano R, Castro F, editors. Bienestar animal experimentación, producción, compañía y zoológicos. Córdoba, España: Copisterías Don Folio; 2003. pp. 53-61.
5. Jaramillo LM, Balcazar IB, Duran C. Using vaginal wall impedance to determine estrous cycle phase in Lewis rats. Lab Anim (NY). 2012 May; 41(5): 122-8.
6. Orihuela PA, Ortiz ME, Croxatto HB. Sperm migration into and through the oviduct following artificial insemination at different stages of the estrous cycle in the rat. Biol Reprod. Apr 1999; 60(4): 908-13.
7. Agca Y, Critser JK. Assisted reproductive technologies and genetic engineering in rats. In: Suckow MA, Weisbroth SH, Franklin CL, editors. The laboratory rat. 2nd ed. San Diego: Academic Press; 2005. pp. 165-90.
8. Kashiwazaki N, Seita Y, Takizawa A, Maedomari N, Ito J, Serikawa T. Techniques for in vitro and in vivo fertilization in the rat. Methods Mol Biol. 2010; 597: 311-22.
9. Maeda K, Ohkura S, Tsukamura H. Physiology of reproduction. In: Krinke GJ, editor. The laboratory rat. London: Academic Press; 2000. pp. 145-76.
10. Cameron NM. Maternal programming of reproductive function and behavior in the female rat. Front Evol Neurosci. 2011; 3: 10.
11. Smith CC, Cizza G, Gomez M, Greibler C, Gold PW, Sternberg EM. The estrous cycle and pituitary-ovarian function in Lewis and Fischer rats. Neuroimmunomodulation. 1994 Jul-Aug; 1(4): 231-5.
12. Singletary SJ, Kirsch AJ, Watson J, Karim BO, Huso DL, Hurn PD, Murphy SJ. Lack of correlation of vaginal impedance measurements with hormone levels in the rat. Contemp Top Lab Anim Sci. 2005 Nov; 44(6): 37-42.
13. National Research Council. Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press; 2011.
14. Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails?: structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev. 2012 Jan; 79(1): 4-18.
15. Salleh N, Baines DL, Naftalin RJ, Milligan SR. The hormonal control of uterine luminal fluid secretion and absorption. J Membr Biol. Jul 2005; 206 (1): 17-28.
16. Meglioli G. Oestrogenic sensitivity of rat uterine secretion. J Reprod Fertil. 1976 Mar; 46(2): 395-9.
17. Clemetson CA, Verma UL, De Carlo SJ. Secretion and reabsorption of uterine luminal fluid in rats. J Reprod Fertil. 1977 Mar; 49(2): 183-7.
18. Seita Y, Sugio S, Ito J, Kashiwazaki N. Generation of live rats produced by in vitro fertilization using cryopreserved spermatozoa. Biol Reprod. 2009 Mar; 80(3): 503-10.
19. Joshi MS, Yaron A, Lindner HR. Intrauterine gelation of seminal plasma components in the rat after coitus. J Reprod Fertil. 1972 Jul; 30(1): 27-37.
20. Nakatsukasa E, Inomata T, Ikeda T, Shino M, Kashiwazaki N. Generation of live rat offspring by intrauterine insemination with epididymal spermatozoa cryopreserved at -196 degrees C. Reproduction. 2001 Sep; 122(3): 463-7.
21. Nakata M, Okuda Y, Yamashita Y, Nakauchi C, Ito J, Kashiwazaki N. Successful Production of Offspring Using Cryopreserved Sperm via Nonsurgical Artificial Insemination in Rats. J Reprod Dev. 2012 Aug 30; 58(4): 501-4.
Cómo citar
Jaramillo Gómez, L. M., & Durán Correa, C. (2013). Implementation of the Intrauterine Artificial Insemination Technique in Lewis Rats for Harvesting Embryos used in Dental Tissue Engineering Projects / Aplicación de la técnica de inseminación artificial intrauterina en ratas Lewis para obtención de emb. Universitas Odontologica, 32(69), 103–113. Recuperado a partir de https://revistas.javeriana.edu.co/index.php/revUnivOdontologica/article/view/SICI%3A%202027-3444%28201307%2932%3A69%3C103%3AIAIDTE%3E2.0.CO%3B2-9
Sección
Ciencias Básicas, Biotecnología y Bioinformática

Artículos más leídos del mismo autor/a