Publicado dic 13, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Ángel Eduardo Pirela Labrador

Luis Felipe Tangarife Tobón

Nelly Stella Roa Molina

Camilo Durán Correa

Lorenza María Jaramillo Gómez

##plugins.themes.bootstrap3.article.details##

Resumen

Antecedentes. Las células troncales se consideran un agente terapéutico prometedor en regeneración de tejidos. El uso de éstas requiere un proceso previo y riguroso de obtención y para su aplicación es esencial el uso de modelos animales. Objetivo: Obtener poblaciones de células troncales de médula ósea de ratas con la conservación en cultivo de las características de troncalidad. Métodos: Este fue un estudio experimental en el que se usaron ratas macho y hembras eutanasiadas del linaje Lewis. Se disecaron los huesos de las extremidades posteriores y, a partir de la médula ósea de estos, se obtuvieron los cultivos primarios a los cuales se les hizo la depleción de las poblaciones CD45+. Las poblaciones libres de CD45 se subcultivaron hasta el pasaje cinco y se evaluaron sus características morfológicas, inmunofenotípicas, de proliferación y la capacidad de diferenciación a tres linajes. Resultados: La evaluación morfológica de los cultivos mostró un predominio de células ahusadas y fibroblastoides que crecieron adheridos y en UFC-F. El inmunofenotipo se caracterizó por la expresión positiva de CD90, CD29 y CD146. Los cultivos inducidos a los linajes osteogénico, condrogénico y adipogénico mostraron un cambio en la morfología y positividad a las tinciones de Rojo de Alizarina, Azul Alcian y Aceite Rojo O, respectivamente. El aumento en la actividad de fosfatasa alcalina corroboró la diferenciación osteogénica en los subcultivos inducidos a este linaje. Conclusión: Se obtuvieron poblaciones de células troncales de médula ósea de ratas que conservaban las características de troncalidad y por lo tanto la posibilidad de usarlas en estudios preclínicos de regeneración de tejidos.

Keywords

biotecnología, células troncales de médula ósea, cultivo celular, diferenciación celular, ingeniería de tejidos, ratas Lewisbiotechnology, bone marrow stem cells, cell culture, cell differentiation, Lewis rats, tissue engineeringbiotecnologia, células-tronco da medula óssea, cultura de células, diferenciação celular, engenharia de tecidos, ratos Lewis

References
1. Mizukami A, Swiech K. Mesenchymal Stromal cells: from discovery to manufacturing and commercialization. Stem Cells Int. 2018 Apr 11; 2018: 4083921. https://dx.doi.org/110.1155/2018/4083921
2. Tatullo M, Codispoti B, Paduano F, Nuzzolese M, Makeeva I. Strategic Tools in Regenerative and Translational Dentistry. Int J Mol Sci. 2019 Apr 16; 20(8): 1879. https://dx.doi.org/10.3390/ijms20081879
3. McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech. 2018 Apr 23; 11(4): dmm033084. https://dx.doi.org/10.1242/dmm.033084
4. Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med. 2010 Jul; 1(1): 43-52. https://dx.doi.org/10.4103/0976-9668.71674
5. Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A, Mirzaei H. Stem Cell Therapy: A New Therapeutic Option for Cardiovascular Diseases. J Cell Biochem. 2018 Jan; 119(1): 95-104. https://dx.doi.org/10.1002/jcb.26169
6. Faça VM. Human mesenchymal stromal cell proteomics: contribution for identification of new markers and targets for medicine intervention. Expert Rev Proteomics. 2012 Apr; 9(2): 217-230. https://dx.doi.org/10.1586/epr.12.9
7. Yelick PC, Sharpe PT. Tooth Bioengineering and Regenerative Dentistry. J Dent Res. 2019 Oct; 98(11): 1173-1182. https://dx.doi.org /10.1177/0022034519861903
8. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019 Jul; 21(7): 801-811. https://dx.doi.org/10.1038/s41556-019-0344-z
9. Liu JQ, Li QW, Tan Z. New Insights on Properties and Spatial Distributions of Skeletal Stem Cells. Stem Cells Int. 2019 Jun 3; 2019: 9026729. https://dx.doi.org/10.1155/2019/9026729
10. Bianco P, Robey PG, Saggio I, Riminucci M. "Mesenchymal" stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther. 2010 Sep; 21(9): 1057-1066. https://dx.doi.org /10.1089/hum.2010.136
11. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep; 9(5): 641-650. https://dx.doi.org/10.1002/jor.1100090504
12. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med. 2017 Dec; 6(12): 2173-2185. https://dx.doi.org /10.1002/sctm.17-0129
13. Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018 Sep; 561(7724): 455-457. https://dx.doi.org/10.1038/d41586-018-06756-9
14. Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med. 2017 Jun; 6(6): 1445-1451. https://dx.doi.org/10.1002/sctm.17-0051
15. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968 Mar; 6(2): 230-247
16. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974 Apr; 17(4): 331-340. https://dx.doi.org /10.1097/00007890-197404000-00001
17. Pelekanos RA, Sardesai VS, Futrega K, Lott WB, Kuhn M, Doran MR. Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue. J Vis Exp. 2016 Jun 6; (112): 54204. https://dx.doi.org/10.3791/54204
18. Amati E, Sella S, Perbellini O, Alghisi A, Bernardi M, Chieregato K, Lievore C, Peserico D, Rigno M, Zilio A, Ruggeri M, Rodeghiero F, Astori G. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res Ther. 2017 Jan 24; 8(1): 14. https://dx.doi.org/10.1186/s13287-016-0465-2
19. Bieback K, Netsch P. Isolation, Culture, and Characterization of Human Umbilical Cord Blood-Derived Mesenchymal Stromal Cells. Methods Mol Biol. 2016; 1416: 245-258. https://dx.doi.org/10.1007/978-1-4939-3584-0_14
20. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells. 2014 Apr 26; 6(2): 195-202. https://dx.doi.org /10.4252/wjsc.v6.i2.195
21. Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015 Apr 13; 6(1): 55. https://dx.doi.org /10.1186/s13287-015-0066-5
22. Orciani M, Di Primio R. Skin-derived mesenchymal stem cells: isolation, culture, and characterization. Methods Mol Biol. 2013; 989: 275-283. https://dx.doi.org/10.1007/978-1-62703-330-5_21
23. Choi WY, Jeon HG, Chung Y, Lim JJ, Shin DH, Kim JM, Ki BS, Song SH, Choi SJ, Park KH, Shim SH, Moon J, Jung SJ, Kang HM, Park S, Chung HM, Ko JJ, Cha KY, Yoon TK, Kim H, Lee DR. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev. 2013 Aug 1; 22(15): 2158-2173. https://dx.doi.org/10.1089/scd.2012.0385
24. Appaix F, Nissou MF, van der Sanden B, Dreyfus M, Berger F, Issartel JP, Wion D. Brain mesenchymal stem cells: The other stem cells of the brain? World J Stem Cells. 2014 Apr 26; 6(2): 134-143. https://dx.doi.org/10.4252/wjsc.v6.i2.134
25. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Gabriel Chu TM, Goebel WS. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med. 2010 Jan; 4(1): 73-81. https://dx.doi.org/10.1002/term.220
26. Yamada Y, Nakamura S, Ito K, Sugito T, Yoshimi R, Nagasaka T, Ueda M. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A. 2010 Jun; 16(6): 1891-900. https://dx.doi.org/10.1089/ten.TEA.2009.0732
27. Kunimatsu R, Nakajima K, Awada T, Tsuka Y, Abe T, Ando K, Hiraki T, Kimura A, Tanimoto K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018 Jun 18; 501(1): 193-198. https://dx.doi.org/10.1016/j.bbrc.2018.04.213
28. Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells. 2019 Jun 26; 11(6): 347-374. https://dx.doi.org/10.4252/wjsc.v11.i6.347
29. Guadix JA, Zugaza JL, Gálvez-Martín P. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy. Med Clin (Barc). 2017 May 10; 148(9): 408-414. English, Spanish. https://dx.doi.org/10.1016/j.medcli.2016.11.033
30. Alhadlaq A, Mao JJ. Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev. 2004 Aug;13(4):436-48. https://dx.doi.org/10.1089/scd.2004.13.436
31. Chahla J, Mannava S, Cinque ME, Geeslin AG, Codina D, LaPrade RF. Bone Marrow Aspirate Concentrate Harvesting and Processing Technique. Arthrosc Tech. 2017 Apr 10; 6(2): e441-e445. https://dx.doi.org/10.1016/j.eats.2016.10.024
32. Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin? J Cell Physiol. 2018 Dec; 233(12): 9099-9109. https://dx.doi.org/10.1002/jcp.26860
33. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. https://dx.doi.org/10.1080/14653240600855905
34. Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013 Jan; 19(1): 35-42. https://dx.doi.org/10.1038/nm.3028
35. Nakashima M, Iohara K, Bottino MC, Fouad AF, Nör JE, Huang GT. Animal Models for Stem Cell-Based Pulp Regeneration: Foundation for Human Clinical Applications. Tissue Eng Part B Rev. 2019 Apr; 25(2): 100-113. . https://dx.doi.org/10.1089/ten.TEB.2018.0194
36. Sandoval RM, Molitoris BA, Palygin O. Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. Methods Mol Biol. 2019; 2018: 151-175. https://dx.doi.org/10.1007/978-1-4939-9581-3_7
37. Jacob HJ. The rat: a model used in biomedical research. Methods Mol Biol. 2010; 597:1-11. https://dx.doi.org/10.1007/978-1-60327-389-3_1
38. Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, Rumajogee P, Chio J, Fehlings MG. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One. 2018 Nov 28; 13(11): e0208105. https://dx.doi.org/10.1371/journal.pone.0208105
39. He D, Zhang J, Wu W, Yi N, He W, Lu P, Li B, Yang N, Wang D, Xue Z, Zhang P, Fan G, Zhu X. A novel immunodeficient rat model supports human lung cancer xenografts. FASEB J. 2019 Jan; 33(1): 140-150. https://dx.doi.org/10.1096/fj.201800102RR
40. Konopelski P, Ufnal M. Electrocardiography in rats: a comparison to human. Physiol Res. 2016 Nov 23; 65(5): 717-725. https://dx.doi.org/10.33549/physiolres.933270
41. Agarwal S, Harter ZJ, Krishnamachary B, Chen L, Nguyen T, Voelkel NF, Dhillon NK. Sugen-morphine model of pulmonary arterial hypertension. Pulm Circ. 2020 Feb 4; 10(1): 2045894019898376. https://dx.doi.org/10.1177/2045894019898376
42. Liao J, Cui C. Generation and Characterization of Rat iPSCs. Methods Mol Biol. 2016; 1357: https://dx.doi.org/133-48. 10.1007/7651_2015_200
43. Mähler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014 Jul; 48(3): 178-192. https://dx.doi.org/10.1177/0023677213516312
44. Ridzuan N, Al Abbar A, Yip WK, Maqbool M, Ramasamy R. Caracterización y expresión del marcador de senescencia en pasajes prolongados de células madre mesenquimales derivadas de médula ósea de rata. Células Madre Int. 2016; 2016: 8487264. https://dx.doi.org/10.1155/2016/8487264
45. Ahmed N, Vogel B, Rohde E, Strunk D, Grifka J, Schulz MB, Grässel S. CD45-positive cells of haematopoietic origin enhance chondrogenic marker gene expression in rat marrow stromal cells. Int J Mol Med. 2006 Aug; 18(2): 233-240.
46. Davies OG, Cooper PR, Shelton RM, Smith AJ, Scheven BA. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab. 2015 Jul; 33(4): 371-82. https://dx.doi.org/10.1007/s00774-014-0601-y
47. Wen Y, Yang H, Liu Y, Liu Q, Wang A, Ding Y, Jin Z. Evaluation of BMMSCs-EPCs sheets for repairing alveolar bone defects in ovariectomized rats. Sci Rep. 2017 Nov 29; 7(1): 16568. https://dx.doi.org/10.1038/s41598-017-16404-3
48. Sprio AE, Di Scipio F, Raimondo S, Salamone P, Pagliari F, Pagliari S, Folino A, Forte G, Geuna S, Di Nardo P, Berta GN. Self-renewal and multipotency coexist in a long-term cultured adult rat dental pulp stem cell line: an exception to the rule? Stem Cells Dev. 2012 Dec 10; 21(18): 3278-88. https://dx.doi.org/10.1089/scd.2012.0141
49. Kaibuchi N, Iwata T, Yamato M, Okano T, Ando T. Terapia de lámina de células estromales mesenquimales multipotentes para la osteonecrosis de la mandíbula relacionada con bisfosfonatos en un modelo de rata. Acta Biomater. 2016 15 de sep; 42: 400-410. https://dx.doi.org/10.1016/j.actbio.2016.06.022
50. Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi S, Yamazaki H. Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One. 2012; 7(11): e46436. https://dx.doi.org/10.1371/journal.pone.0046436
51. Prowse AB, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011 Jan; 6(1): 1-12. https://dx.doi.org/10.1016/j.scr.2010.09.005
52. Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2018 Jul; 24(5): 696-705. https://dx.doi.org/10.1111/odi.12703
53. Wang J, Liu S, Li J, Zhao S, Yi Z. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2019 Jun 28; 10(1): 197. https://dx.doi.org/10.1186/s13287-019-1309-7
54. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated Bone Marrow Aspirate for the Treatment of Chondral Injuries and Osteoarthritis of the Knee: A Systematic Review of Outcomes. Orthop J Sports Med. 2016 Jan 13; 4(1): 2325967115625481. https://dx.doi.org/10.1177/2325967115625481
55. Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci. 2019 May 22; 20(10): 2523. https://dx.doi.org/10.3390/ijms20102523
56. Lagarkova MA. Such Various Stem Cells. Biochemistry (Mosc). 2019 Mar; 84(3): 187-189. https://dx.doi.org/10.1134/S0006297919030015
57. Jaramillo L, Briceño I, Durán C. Odontogenic cell culture in PEGDA hydrogel scaffolds for use in tooth regeneration protocols. Acta Odontol Latinoam. 2012; 25(3): 243-254
58. Chen W, Sun Y, Gu X, Cai J, Liu X, Zhang X, Chen J, Hao Y, Chen S. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials. 2021 Apr; 271: 120714. https://dx.doi.org/10.1016/j.biomaterials.2021.120714
59. Rodríguez-Saenz Á, Martínez-Carreño M, Munévar JC. The therapeutic potential of stem cells secretome. Rev CES Odont. 2018; 31(2): 10.
60. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2; 284(5411): 143-147. https://dx.doi.org/10.1126/science.284.5411.143
61. Yianni V, Sharpe PT. Perivascular-Derived Mesenchymal Stem Cells. J Dent Res. 2019 Sep; 98(10): 1066-1072. https://dx.doi.org/10.1177/0022034519862258
62. Mashimo T, Sato Y, Akita D, Toriumi T, Namaki S, Matsuzaki Y, Yonehara Y, Honda M. Bone marrow-derived mesenchymal stem cells enhance bone marrow regeneration in dental extraction sockets. J Oral Sci. 2019; 61(2): 284-293. https://dx.doi.org/10.2334/josnusd.18-0143
63. Smith JR, Bolton ER, Dwinell MR. The Rat: A Model Used in Biomedical Research. Methods Mol Biol. 2019; 2018: https://dx.doi.org/1-41. d10.1007/978-1-4939-9581-3_1
64. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007 Nov; 25(11): 2739-2749. https://dx.doi.org/10.1634/stemcells.2007-0197
65. Yusop N, Battersby P, Alraies A, Sloan AJ, Moseley R, Waddington RJ. Isolation and Characterisation of Mesenchymal Stem Cells from Rat Bone Marrow and the Endosteal Niche: A Comparative Study. Stem Cells Int. 2018 Mar 22; 2018: 6869128. https://dx.doi.org/10.1155/2018/6869128
66. Harrington J, Sloan AJ, Waddington RJ. Quantification of clonal heterogeneity of mesenchymal progenitor cells in dental pulp and bone marrow. Connect Tissue Res. 2014; 55 Suppl 1: 62-67. https://dx.doi.org/10.3109/03008207.2014.923859
67. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell. 2007 Aug; 99(8): 465-474. https://dx.doi.org/10.1042/BC20070013
68. Nicodemou A, Danisovic L. Mesenchymal stromal/stem cell separation methods: concise review. Cell Tissue Bank. 2017 Dec; 18(4): 443-460. https://dx.doi.org/10.1007/s10561-017-9658-x
69. Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther. 2016 Jul 28; 7(1): 97. https://dx.doi.org/10.1186/s13287-016-0359-3
70. Saalbach A, Anderegg U. Thy-1: more than a marker for mesenchymal stromal cells. FASEB J. 2019 Jun; 33(6): 6689-6696. https://dx.doi.org/10.1096/fj.201802224R
71. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008 Sep 11; 3(3): 301-313. https://dx.doi.org/10.1016/j.stem.2008.07.003
72. He Q, Ye Z, Zhou Y, Tan WS. Comparative study of mesenchymal stem cells from rat bone marrow and adipose tissue. Turk J Biol. 2018 Dec 10; 42: 477-489. https://dx.doi.org/10.3906/biy-1802-52
73. Li C, Wei G, Gu Q, Wen G, Qi B, Xu L, Tao S. Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells. Cell Biochem Biophys. 2015 Jun; 72(2): 543-9. https://dx.doi.org/10.1007/s12013-014-0500-9
74. Jiang Z, Xi Y, Lai K, Wang Y, Wang H, Yang G. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology. Biomed Res Int. 2017; 2017: 9474573. https://dx.doi.org/10.1155/2017/9474573
75. McLeod CM, Mauck RL. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater. 2017 Oct 27; 34: 217-231. https://dx.doi.org/10.22203/eCM.v034a14
76. Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016 Jul 26; 7: 34. https://dx.doi.org/10.1186/s13293-016-0087-5
77. Zajitschek SR, Zajitschek F, Bonduriansky R, Brooks RC, Cornwell W, Falster DS, Lagisz M, Mason J, Senior AM, Noble DW, Nakagawa S. Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications. Elife. 2020 Nov 17; 9: e63170. https://dx.doi.org/10.7554/eLife.63170
78. Beery AK. Inclusion of females does not increase variability in rodent research studies. Curr Opin Behav Sci. 2018 Oct; 23: 143-149. https://dx.doi.org/10.1016/j.cobeha.2018.06.016
Cómo citar
Pirela Labrador, Ángel E., Tangarife Tobón, L. F., Roa Molina, N. S., Durán Correa, C., & Jaramillo Gómez, L. M. (2022). Cultivo de células troncales de médula ósea de ratas para uso en regeneración de tejidos. Universitas Odontologica, 41. https://doi.org/10.11144/Javeriana.uo41.rbms
Sección
Ciencias Básicas, Biotecnología y Bioinformática

Artículos más leídos del mismo autor/a

1 2 > >>