Transición epitelio-mesénquima y migración celular en células de la cresta neural y células metastásicas de carcinomas. Revisión de la literatura
PDF

Palabras clave

cresta neural
cáncer
metástasis

Cómo citar

Transición epitelio-mesénquima y migración celular en células de la cresta neural y células metastásicas de carcinomas. Revisión de la literatura. (2016). Universitas Medica, 57(1), 83-107. https://doi.org/10.11144/Javeriana.umed57-1.temm
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

Introducción: Evidencias moleculares y celulares muestran mecanismos comunes entre la migración de las células de la cresta neural (CCN) y la metástasis en las células cancerosas. La delaminación de las CCN implica una transición epitelio-mesénquima (TEM) parcial o completa, la cual es regulada por una compleja red de factores de transcripción. Métodos: Se realizó una revisión de la literatura acerca de las similitudes existentes entre los procesos de delaminación de las CCN y la progresión tumoral.
Resultados y conclusiones: El proceso de TEM es clave tanto en la morfogénesis
embrionaria como en la progresión de tumores primarios hacia tumores metastásicos, por lo que comprender cómo se dan los cambios que conducen a la migración celular constituye una importante herramienta para encaminar futuras alternativas terapeúticas en neurocristopatías y cáncer.

PDF

Crane JF, Trainor PA. Neural cres stem

and progenitor cells. Annu Rev Cell Dev

Biol [Internet]. Annual Reviews; 2006 Jan

[cited 2015 Apr 18]; 22:267-86. Disponible

en: http://www.annualreviews.

org/doi/abs/10.1146/annurev.cellbio.22.0

103814?urlver=Z39.88-2003&rfr_

dat=cr_pub %3Dpubmed&rfr_id=ori %3

Arid %3Acrossreforg&journalCode=cell

bio

Achilleos A, Trainor PA. Neural crest

stem cells: discovery, properties and potential

for therapy. Cell Res [Internet].

Feb [cited 2015 Apr 18];22(2):288-

Disponible en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=

&tool=pmcentrez&rendertype=

abstract

Kuriyama S, Mayor R. Molecular analysis

of neural crest migration. Philos Trans R

Soc Lond B Biol Sci [Internet]. 2008 Apr

[cited 2015 Apr 18];363(1495):1349-

Disponible en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=

&tool=pmcentrez&rendertype=

abstract

Huang X, Saint-Jeannet J-P. Induction

of the neural crest and the opportunities

of life on the edge. Dev Biol [Internet].

Nov 1 [cited 2015 Apr 6];275(1):1-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/15464568

Kulesa PM, Kasemeier-Kulesa JC, Teddy

JM, Margaryan N V., Seftor EA, Seftor

REB, et al. Reprogramming metastatic

melanoma cells to assume a neural

crest cell-like phenotype in an embryonic

microenvironment. Proc Natl Acad

Sci [Internet]. 2006 Feb 27 [cited 2015

Apr 18];103(10):3752-7. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=1450149&tool=pmc

entrez&rendertype=abstract

Powell DR, O’Brien JH, Ford HL, Artinger

KB. Neural Crest Cells [Internet].

Neural Crest Cells. Elsevier; 2014 [cited

Sep 6]. 335-357 p. Disponible en:

http://www.sciencedirect.com/science/

article/pii/B978012401730600017X

Chambers AF, Groom AC, MacDonald

IC. Dissemination and growth of cancer

cells in metastatic sites. Nat Rev Cancer

[Internet]. 2002 Aug [cited 2014

Jul 14];2(8):563-72. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Royer C, Lu X. Epithelial cell polarity:

a major gatekeeper against cancer? Cell

Death Differ [Internet]. 2011 Sep [cited 2015 Feb 14];18(9):1470-7. Disponible

en: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3178423&tool=

pmcentrez&rendertype=abstract

Powell DR, O’Brien JH, Ford HL AK.

Neural Crest Cells and Cancer: Insights

into Tumor Progression. In: Trainor PA,

editor. Neural crest cells: evolution, development

and disease. 1st ed. San Diego,

CA: Academic Press; 2014. p. 335-57.

Humbert PO, Grzeschik NA, Brumby

AM, Galea R, Elsum I, Richardson HE.

Control of tumourigenesis by the Scribble/

Dlg/Lgl polarity module. Oncogene

[Internet]. 2008 Nov 24 [cited 2015

Mar 2];27(55):6888-907. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Lee M, Vasioukhin V. Cell polarity

and cancer-cell and tissue polarity

as a non-canonical tumor suppressor. J

Cell Sci [Internet]. 2008 Apr 15 [cited

Jan 8];121(Pt 8):1141-50. Disponible

en: http://jcs.biologists.org/content/

/8/1141.short

Whiteman EL, Liu C-J, Fearon ER, Margolis

B. The transcription factor snail represses

Crumbs3 expression and disrupts

apico-basal polarity complexes. Oncogene

[Internet]. 2008 Jun 19 [cited 2015

Mar 29];27(27):3875-9. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2533733&tool=pmc

entrez&rendertype=abstract

Zhan L, Rosenberg A, Bergami KC, Yu

M, Xuan Z, Jaffe AB, et al. Deregulation

of scribble promotes mammary tumorigenesis

and reveals a role for cell polarity

in carcinoma. Cell [Internet]. 2008 Nov

[cited 2015 Jan 29];135(5):865-78.

Disponible en: http://www.cell.com/article/

S0092867408012385/fulltext

Pearson HB, Perez-Mancera PA, Dow

LE, Ryan A, Tennstedt P, Bogani D, et al.

SCRIB expression is deregulated in human

prostate cancer, and its deficiency in

mice promotes prostate neoplasia. J Clin

Invest [Internet]. 2011 Nov 1 [cited 2015

Jan 29];121(11):4257-67. Disponible en:

http://www.jci.org/articles/view/58509

Dow LE, Elsum IA, King CL, Kinross

KM, Richardson HE, Humbert PO. Loss

of human Scribble cooperates with H-Ras

to promote cell invasion through deregulation

of MAPK signalling. Oncogene

[Internet]. 2008 Oct 9 [cited 2015 Jan

;27(46):5988-6001. Disponible en:

http://dx.doi.org/10.1038/onc.2008.219

Wu M, Pastor-Pareja JC, Xu T. Interaction

between Ras(V12) and scribbled

clones induces tumour growth and invasion.

Nature [Internet]. 2010 Jan 28

[cited 2014 Dec 11];463(7280):545-8.

Disponible en: http://dx.doi.org/10.1038/

nature08702

Nakagawa S, Yano T, Nakagawa K,

Takizawa S, Suzuki Y, Yasugi T, et al.

Analysis of the expression and localisation

of a LAP protein, human scribble,

in the normal and neoplastic epithelium

of uterine cervix. Br J Cancer [Internet].

Jan 12 [cited 2015 Jan

;90(1):194-9. Disponible en: http://

dx.doi.org/10.1038/sj.bjc.6601465

Kuphal S, Wallner S, Schimanski CC,

Bataille F, Hofer P, Strand S, et al.

Expression of Hugl-1 is strongly reduced

in malignant melanoma. Oncogene

[Internet]. 2006 Jan 5 [cited 2015

Jan 29];25(1):103-10. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Storrs CH, Silverstein SJ. PATJ, a tight

junction-associated PDZ protein, is anovel degradation target of high-risk

human papillomavirus E6 and the alternatively

spliced isoform 18 E6. J Virol

[Internet]. 2007 Apr [cited 2015 Apr

;81(8):4080-90. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=1866151&tool=pmcentrez

&rendertype=abstract

Michel D, Arsanto J-P, Massey-Harroche

D, Béclin C, Wijnholds J, Le

Bivic A. PATJ connects and stabilizes

apical and lateral components of tight

junctions in human intestinal cells. J

Cell Sci [Internet]. 2005 Sep 1 [cited

Jan 29];118(Pt 17):4049-57. Disponible

en: http://jcs.biologists.org/content/

/17/4049

Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi

N, Mitsufuji S, et al. Defective

expression of polarity protein

PAR-3 gene (PARD3) in esophageal

squamous cell carcinoma. Oncogene

[Internet]. 2009 Aug 13 [cited 2015 Jan

;28(32):2910-8. Disponible en: http://

dx.doi.org/10.1038/onc.2009.148

Xue B, Krishnamurthy K, Allred DC,

Muthuswamy SK. Loss of Par3 promotes

breast cancer metastasis by compromising

cell-cell cohesion. Nat Cell

Biol [Internet]. 2013 Mar [cited 2015

Jan 30];15(2):189-200. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Ellenbroek SIJ, Iden S, Collard JG.

Cell polarity proteins and cancer. Semin

Cancer Biol [Internet]. 2012 Jun

[cited 2015 Apr 19];22(3):208-15. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/22465739

Nolan ME, Aranda V, Lee S, Lakshmi

B, Basu S, Allred DC, et al. The polarity

protein Par6 induces cell proliferation

and is overexpressed in breast cancer.

Cancer Res [Internet]. 2008 Oct 15 [cited

Apr 19];68(20):8201-9. Disponible

en: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=2948755&tool=

pmcentrez&rendertype=abstract

Ross, M. H., Romrell, L. J., and Kaye

GIH. Histology: A Text and Atlas. 5th ed.

Baltimore: Williams & Wilkins; 2006. p.

-138.

26. Halbleib JM, Nelson WJ. Cadherins

in development: cell adhesion, sorting,

and tissue morphogenesis. Genes Dev

[Internet]. 2006 Dec 1 [cited 2014 Nov

;20(23):3199-214. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Yang J, Weinberg R a. Epithelial-mesenchymal

transition: at the crossroads of

development and tumor metastasis. Dev

Cell. 2008;14:818-29.

Jeanes A, Gottardi CJ, Yap AS. Cadherins

and cancer: how does cadherin dysfunction

promote tumor progression? Oncogene

[Internet]. 2008 Nov 24 [cited 2015

Jan 29];27(55):6920-9. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2745643&tool=pmc

entrez&rendertype=abstract

Peinado H, Portillo F, Cano A. Transcriptional

regulation of cadherins during development

and carcinogenesis. Int J Dev

Biol [Internet]. 2004 Jan [cited 2015

Apr 4];48(5-6):365-75. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Schmalhofer O, Brabletz S, Brabletz T.

E-cadherin, beta-catenin, and ZEB1 in

malignant progression of cancer. Cancer

Metastasis Rev [Internet]. 2009 Jun

[cited 2015 Jan 29];28(1-2):151-66. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/19153669

Valenta T, Hausmann G, Basler K. The

many faces and functions of β-catenin.

EMBO J [Internet]. 2012 Jun 13 [cited

Oct 28];31(12):2714-36. Disponible

en: http://emboj.embopress.org/

content/31/12/2714.abstract

Perl AK, Wilgenbus P, Dahl U, Semb H,

Christofori G. A causal role for E-cadherin

in the transition from adenoma to

carcinoma. Nature [Internet]. 1998 Mar

[cited 2015 Jan 29];392(6672):190-

Disponible en: http://dx.doi.org/10.

/32433

Onder TT, Gupta PB, Mani SA, Yang J,

Lander ES, Weinberg RA. Loss of E-cadherin

promotes metastasis via multiple

downstream transcriptional pathways.

Cancer Res [Internet]. 2008 May 15 [cited

Sep 15];68(10):3645-54. Disponible

en: http://cancerres.aacrjournals.

org/content/68/10/3645

El Moneim HMA, Zaghloul NM. Expression

of E-cadherin, N-cadherin and

snail and their correlation with clinicopathological

variants: an immunohistochemical

study of 132 invasive ductal

breast carcinomas in Egypt. Clinics (Sao

Paulo) [Internet]. 2011 Jan [cited 2015

Jan 29];66(10):1765-71. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3180143&tool=pmc

entrez&rendertype=abstract

Elzagheid A, Buhmeida A, Laato M, El-

Faitori O, Syrjänen K, Collan Y, et al.

Loss of E-cadherin expression predicts

disease recurrence and shorter survival in

colorectal carcinoma. APMIS [Internet].

Jul [cited 2015 Jan 29];120(7):539-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/22716209

Dunbier A, Guilford P. Hereditary diffuse

gastric cancer. Adv Cancer Res [Internet].

Jan [cited 2015 Apr 18];83:55-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/11665720

Kovacs A. Expression of P-cadherin, but

not E-cadherin or N-cadherin, relates

to pathological and functional differentiation

of breast carcinomas. Mol Pathol

[Internet]. 2003 Dec 1 [cited 2015 Jan

;56(6):318-22. Disponible en: http://

mp.bmj.com/content/56/6/318

Bussemakers MJ, Van Bokhoven A, Tomita

K, Jansen CF, Schalken JA. Complex

cadherin expression in human prostate

cancer cells. Int J Cancer [Internet]. 2000

Mar 1 [cited 2015 Jan 29];85(3):446-50.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/10652439

Derycke LDM, Bracke ME. N-cadherin

in the spotlight of cell-cell adhesion, differentiation,

embryogenesis, invasion and

signalling. Int J Dev Biol [Internet]. 2004

Jan [cited 2015 Apr 19];48(5-6):463-76.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/15349821

Ramis-Conde I, Chaplain MAJ, Anderson

ARA, Drasdo D. Multi-scale modelling

of cancer cell intravasation: the

role of cadherins in metastasis. Phys

Biol [Internet]. 2009 Jan [cited 2015

Apr 19];6(1):016008. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Paul R, Necknig U, Busch R, Ewing

CM, Hartung R, Isaacs WB. Cadherin-6:

a new prognostic marker for renal cell

carcinoma. J Urol [Internet]. 2004 Jan 1

[cited 2015 Jan 29];171(1):97-101. Disponible

en: http://www.jurology.com/article/

S0022534705626730/fulltext

Shoval I, Ludwig A, Kalcheim C. Antagonistic

roles of full-length N-cadherin

and its soluble BMP cleavage product

in neural crest delamination. Development [Internet]. 2007 Feb [cited 2015

Jan 7];134(3):491-501. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Lammens T, Swerts K, Derycke L, De

Craemer A, De Brouwer S, De Preter K,

et al. N-cadherin in neuroblastoma disease:

expression and clinical significance.

PLoS One [Internet]. 2012 Jan 15 [cited

Jan 29];7(2):e31206. Disponible

en:http://journals.plos.org/plosone/

article?id=10.1371/journal.pone.0031206

Berx G, van Roy F. Involvement of

members of the cadherin superfamily in

cancer. Cold Spring Harb Perspect Biol

[Internet]. 2009 Sep 23 [cited 2015 Apr

;1(6):a003129-a003129. Disponible

en:http://cshperspectives.cshlp.org/content/

/6/a003129.full

Tomita K, van Bokhoven A, van Leenders

GJ, Ruijter ET, Jansen CF, Bussemakers

MJ, et al. Cadherin switching in human

prostate cancer progression. Cancer Res

[Internet]. 2000 Jul 1 [cited 2015 Apr

;60(13):3650-4. Disponible en:http://

www.ncbi.nlm.nih.gov/pubmed/10910081

Chu K, Cheng C-J, Ye X, Lee Y-C, Zurita

AJ, Chen D-T, et al. Cadherin-11 promotes

the metastasis of prostate cancer cells to

bone. Mol Cancer Res [Internet]. 2008

Aug 1 [cited 2015 Apr 18];6(8):1259-67.

Disponible en: http://mcr.aacrjournals.

org/content/6/8/1259.abstract?ijkey=e7ed

d9c5bd94d3bc732d2ea787863c779203ea

d&keytype2=tf_ipsecsha

Tamura D, Hiraga T, Myoui A, Yoshikawa

H, Yoneda T. Cadherin-11-mediated

interactions with bone marrow stromal/

osteoblastic cells support selective colonization

of breast cancer cells in bone. Int

J Oncol [Internet]. 2008 Jul [cited 2015

Apr 19];33(1):17-24. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Carmona FJ, Villanueva A, Vidal A,

Muñoz C, Puertas S, Penin RM, et al.

Epigenetic disruption of cadherin-11

in human cancer metastasis. J Pathol

[Internet]. 2012 Oct [cited 2015 Jan

;228(2):230-40. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3467766&tool=pmcentrez

&rendertype=abstract

Li L, Ying J, Li H, Zhang Y, Shu X, Fan

Y, et al. The human cadherin 11 is a proapoptotic

tumor suppressor modulating

cell stemness through Wnt/β-catenin

signaling and silenced in common carcinomas.

Oncogene [Internet]. 2012 Aug

[cited 2015 Jan 29];31(34):3901-12.

Disponible en: http://dx.doi.org/10.1038/

onc.2011.541

Fishwick KJ, Neiderer TE, Jhingory S,

Bronner ME, Taneyhill LA. The tight

junction protein claudin-1 influences cranial

neural crest cell emigration. Mech

Dev [Internet]. 2012 Jan [cited 2015 Jan

;129(9-12):275-83. Disponible en:

http://www.sciencedirect.com/science/

article/pii/S0925477312000597

Wu C-Y, Jhingory S, Taneyhill LA. The

tight junction scaffolding protein cingulin

regulates neural crest cell migration.

Dev Dyn [Internet]. 2011 Oct [cited 2015

Jan 29];240(10):2309-23. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3177993&tool=pmc

entrez&rendertype=abstract

Czyż J, Szpak K, Madeja Z. The role

of connexins in prostate cancer promotion

and progression. Nat Rev Urol

[Internet]. 2012 May [cited 2015 Jan

;9(5):274-82. Disponible en: http://

dx.doi.org/10.1038/nrurol.2012.14

El-Saghir JA, El-Habre ET, El-Sabban

ME, Talhouk RS. Connexins: a junctional

crossroad to breast cancer. Int

J Dev Biol [Internet]. 2011 Jan [cited

Jan 29];55(7-9):773-80. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/22161833

Osanai M, Murata M, Nishikiori N, Chiba

H, Kojima T, Sawada N. Epigenetic

silencing of occludin promotes tumorigenic

and metastatic properties of cancer

cells via modulations of unique sets

of apoptosis-associated genes. Cancer

Res [Internet]. 2006 Sep 15 [cited 2015

Apr 11];66(18):9125-33. Disponible en:

http://cancerres.aacrjournals.org/content/

/18/9125.long

Martin TA, Mansel RE, Jiang WG.

Loss of occludin leads to the progression

of human breast cancer. Int J Mol

Med [Internet]. 2010 Nov 1 [cited 2015

Jan 29];26(5):723-34. Disponible en:

http://www.spandidos-publications.com/

ijmm/26/5/723/abstract

Clay MR, Halloran MC. Regulation of

cell adhesions and motility during initiation

of neural crest migration. Curr Opin

Neurobiol [Internet]. 2011 Feb [cited

Feb 16];21(1):17-22. Disponible

en:http://www.sciencedirect.com/science/

article/pii/S0959438810001832

Kamai T, Tsujii T, Arai K, Takagi K, Asami

H, Ito Y, et al. Significant Association

of Rho/ROCK Pathway with Invasion

and Metastasis of Bladder Cancer. Clin

Cancer Res [Internet]. 2003 Jul 1 [cited

Feb 22];9(7):2632-41. Disponible

en: http://clincancerres.aacrjournals.org/

content/9/7/2632.full

Schmidt A, Hall MN. Signaling to the

actin cytoskeleton. Annu Rev Cell Dev

Biol [Internet]. 1998 Jan [cited 2015 Mar

;14:305-38. Disponible en: http://

www.ncbi.nlm.nih.gov/pubmed/9891786

Khosravi-Far R, Campbell S, Rossman

KL, Der CJ. Increasing complexity of

Ras signal transduction: involvement of

Rho family proteins. Adv Cancer Res

[Internet]. 1998 Jan [cited 2015 Apr

;72:57-107. Disponible en: http://

www.ncbi.nlm.nih.gov/pubmed/9338074

Benitah SA, Valerón PF, van Aelst L,

Marshall CJ, Lacal JC. Rho GTPases in

human cancer: an unresolved link to upstream

and downstream transcriptional

regulation. Biochim Biophys Acta [Internet].

Dec 17 [cited 2015 Apr

;1705(2):121-32. Disponible en: http://

www.sciencedirect.com/science/article/

pii/S0304419X04000654

Shoval I, Kalcheim C. Antagonistic activities

of Rho and Rac GTPases underlie the

transition from neural crest delamination

to migration. Dev Dyn [Internet]. 2012

Jul [cited 2015 Jan 30];241(7):1155-68.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22553120

Groysman M, Shoval I, Kalcheim C.

A negative modulatory role for rho and

rho-associated kinase signaling in delamination

of neural crest cells. Neural

Dev [Internet]. 2008 Jan [cited 2015 Jan

;3(1):27. Disponible en: http://www.

neuraldevelopment.com/content/3/1/27

Vega FM, Ridley AJ. Rho GTPases

in cancer cell biology. FEBS Lett [Internet].

Jun 18 [cited 2015 Apr

;582(14):2093-101. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Hakem A, Sanchez-Sweatman O, You-

Ten A, Duncan G, Wakeham A, Khokha

R, et al. RhoC is dispensable for embryogenesis

and tumor initiation but

essential for metastasis. Genes Dev

[Internet]. 2005 Sep 1 [cited 2015 Apr

;19(17):1974-9. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1199568&tool=pmcentrez

&rendertype=abstract

Bellovin DI, Simpson KJ, Danilov T,

Maynard E, Rimm DL, Oettgen P, et al.

Reciprocal regulation of RhoA and RhoC

characterizes the EMT and identifies

RhoC as a prognostic marker of colon

carcinoma. Oncogene [Internet]. 2006

Nov 2 [cited 2015 Apr 4];25(52):6959-67. Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/16715134

Merajver SD, Usmani SZ. Multifaceted

role of Rho proteins in angiogenesis.

J Mammary Gland Biol

Neoplasia [Internet]. 2005 Oct [cited

Apr 4];10(4):291-8. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Huang M, Prendergast GC. RhoB

in cancer suppression. Histol Histopathol

[Internet]. 2006 Feb [cited 2015

Apr 4];21(2):213-8. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Sandilands E, Akbarzadeh S, Vecchione

A, McEwan DG, Frame MC, Heath

JK. Src kinase modulates the activation,

transport and signalling dynamics of fibroblast

growth factor receptors. EMBO

Rep [Internet]. EMBO Press; 2007 Dec

[cited 2015 Apr 4];8(12):1162-9. Disponible

en: http://embor.embopress.org/

content/8/12/1162.abstract

Pan Y, Bi F, Liu N, Xue Y, Yao X, Zheng

Y, et al. Expression of seven main Rho

family members in gastric carcinoma.

Biochem Biophys Res Commun [Internet].

Mar 12 [cited 2015 Jan

;315(3):686-91. Disponible en: http://

www.sciencedirect.com/science/article/

pii/S0006291X04001615

Kamai T, Yamanishi T, Shirataki H, Takagi

K, Asami H, Ito Y, et al. Overexpression

of RhoA, Rac1, and Cdc42 GTPases

is associated with progression in testicular

cancer. Clin Cancer Res [Internet]. 2004

Jul 15 [cited 2015 Jan 31];10(14):4799-

Disponible en: http://clincancerres.

aacrjournals.org/content/10/14/4799

Espina C, Céspedes MV, García-Cabezas

MA, Gómez del Pulgar MT, Boluda A,

Oroz LG, et al. A critical role for Rac1

in tumor progression of human colorectal

adenocarcinoma cells. Am J Pathol

[Internet]. 2008 Jan [cited 2015 Mar

;172(1):156-66. Disponible en: http://

www.sciencedirect.com/science/article/

pii/S000294401061471X

Wang Z, Pedersen E, Basse A, Lefever

T, Peyrollier K, Kapoor S, et al. Rac1

is crucial for Ras-dependent skin tumor

formation by controlling Pak1-Mek-Erk

hyperactivation and hyperproliferation

in vivo. Oncogene [Internet]. 2010 Jun

[cited 2015 Jan 28];29(23):3362-73.

Disponible en: http://dx.doi.org/10.1038/

onc.2010.95

Jaffe AB, Hall A. Rho GTPases: biochemistry

and biology. Annu Rev Cell

Dev Biol [Internet]. 2005 Jan [cited

Aug 29];21:247-69. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Chuang Y, Valster A, Coniglio SJ, Backer

JM, Symons M. The atypical Rho family

GTPase Wrch-1 regulates focal adhesion

formation and cell migration.

J Cell Sci [Internet]. 2007 Jul 1 [cited

Jan 31];120(Pt 11):1927-34. Disponible

en: http://jcs.biologists.org/content/

/11/1927

Aronheim A, Broder YC, Cohen A,

Fritsch A, Belisle B, Abo A. Chp, a

homologue of the GTPase Cdc42Hs,

activates the JNK pathway and is implicated

in reorganizing the actin cytoskeleton.

Curr Biol [Internet]. 1998 Oct 8 [cited 2015 Apr 4];8(20):1125-8. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/9778532

Rozario T, DeSimone DW. The extracellular

matrix in development and morphogenesis:

a dynamic view. Dev Biol

[Internet]. 2010 May 1 [cited 2015 Mar

;341(1):126-40. Disponible en: http://

www.sciencedirect.com/science/article/

pii/S0012160609012858

Cai DH, Vollberg TM, Hahn-Dantona E,

Quigley JP, Brauer PR. MMP-2 expression

during early avian cardiac and neural

crest morphogenesis. Anat Rec [Internet].

Jul 1 [cited 2015 Jan 31];259(2):168-79. Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/10820319

Monsonego-Ornan E, Kosonovsky J, Bar

A, Roth L, Fraggi-Rankis V, Simsa S, et al.

Matrix metalloproteinase 9/gelatinase B

is required for neural crest cell migration.

Dev Biol [Internet]. 2012 May 15 [cited

Jan 31];364(2):162-77. Disponible

en: http://www.sciencedirect.com/science/

article/pii/S0012160612000589

Giambernardi TA, Sakaguchi AY, Gluhak

J, Pavlin D, Troyer DA, Das G, et al. Neutrophil

collagenase (MMP-8) is expressed

during early development in neural crest

cells as well as in adult melanoma cells.

Matrix Biol [Internet]. 2001 Dec [cited

Jan 31];20(8):577-87. Disponible

en: http://www.sciencedirect.com/science/

article/pii/S0945053X01001664

Alfandari D, Wolfsberg TG, White JM,

DeSimone DW. ADAM 13: a novel

ADAM expressed in somitic mesoderm

and neural crest cells during

Xenopus laevis development. Dev Biol

[Internet]. 1997 Mar 15 [cited 2015 Jan

;182(2):314-30. Disponible en: http://

www.sciencedirect.com/science/article/

pii/S0012160696984584

Hanahan D, Weinberg RA. The Hallmarks

of Cancer. Cell [Internet]. 2000

Jan 7 [cited 2014 Jul 9];100(1):57-70.

Disponible en: http://www.cell.com/article/

S0092867400816839/fulltext

Kast RE, Halatsch M-E. Matrix metalloproteinase-

and -9 in glioblastoma:

a trio of old drugs-captopril, disulfiram

and nelfinavir-are inhibitors with potential

as adjunctive treatments in glioblastoma.

Arch Med Res [Internet]. 2012

Apr [cited 2015 May 2];43(3):243-7.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22564423

Hofmann UB, Houben R, Bröcker E-B,

Becker JC. Role of matrix metalloproteinases

in melanoma cell invasion. Biochimie

[Internet]. 2005 Jan [cited 2015

Feb 1];87(3-4):307-14. Disponible en:

http://www.sciencedirect.com/science/

article/pii/S0300908405000180

Turpeenniemi-Hujanen T. Gelatinases

(MMP-2 and -9) and their natural inhibitors

as prognostic indicators in solid cancers.

Biochimie [Internet]. 2005 Jan [cited

Feb 1];87(3-4):287-97. Disponible

en: http://www.sciencedirect.com/science/

article/pii/S0300908405000295

Bauvois B. New facets of matrix metalloproteinases

MMP-2 and MMP-9 as cell

surface transducers: outside-in signaling

and relationship to tumor progression.

Biochim Biophys Acta [Internet]. 2012

Jan [cited 2015 Jan 15];1825(1):29 36.

Disponible en: http://www.sciencedirect.

com/science/article/pii/S0304419

X11000497

Murphy G. The ADAMs: signalling scissors

in the tumour microenvironment.

Nat Rev Cancer [Internet]. 2008 Dec

[cited 2015 Feb 19];8(12):929-41. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/19005493

Gialeli C, Theocharis AD, Karamanos

NK. Roles of matrix metalloproteinases

in cancer progression and their pharmacological

targeting. FEBS J [Internet].

Jan [cited 2015 May 2];278(1):16-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/21087457

Ganguly KK, Pal S, Moulik S, Chatterjee

A. Integrins and metastasis. Cell

Adh Migr [Internet]. Jan [cited 2015 Apr

;7(3):251-61. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3711990&tool=pmcentrez

&rendertype=abstract

Imanishi Y, Hu B, Jarzynka MJ, Guo P,

Elishaev E, Bar-Joseph I, et al. Angiopoietin-

stimulates breast cancer metastasis

through the alpha(5)beta(1) integrin-mediated

pathway. Cancer Res [Internet]. 2007

May 1 [cited 2015 Feb 1];67(9):4254-63.

Disponible en: http://cancerres.aacrjournals.

org/content/67/9/4254

Barkan D, Chambers AF. β1-integrin: a

potential therapeutic target in the battle

against cancer recurrence. Clin Cancer

Res [Internet]. 2011 Dec 1 [cited 2015

Feb 1];17(23):7219-23. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Vladar EK, Antic D, Axelrod JD. Planar

cell polarity signaling: the developing

cell’s compass. Cold Spring Harb Perspect

Biol [Internet]. 2009 Sep 1 [cited

Mar 27];1(3):a002964. Disponible

en: http://cshperspectives.cshlp.org/content/

/3/a002964.full

Clay MR, Halloran MC. Regulation of

cell adhesions and motility during initiation

of neural crest migration. Curr Opin

Neurobiol [Internet]. 2011 Feb [cited

Feb 16];21(1):17-22. Disponible

en: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=3049825&tool=

pmcentrez&rendertype=abstract

De Calisto J, Araya C, Marchant L, Riaz

CF, Mayor R. Essential role of noncanonical

Wnt signalling in neural crest

migration. Development [Internet]. 2005

Jun [cited 2015 May 2];132(11):2587-97.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/15857909

Jessen JR. Noncanonical Wnt signaling in

tumor progression and metastasis. Zebrafish

[Internet]. 2009 Mar [cited 2015 May

;6(1):21-8. Disponible en: http://www.

ncbi.nlm.nih.gov/pubmed/19292672

Kho AT, Zhao Q, Cai Z, Butte AJ, Kim

JYH, Pomeroy SL, et al. Conserved

mechanisms across development and

tumorigenesis revealed by a mouse development

perspective of human cancers.

Genes Dev [Internet]. 2004 Mar

[cited 2015 May 2];18(6):629-40.

Disponible en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?arti

d=387239&tool=pmcentrez&renderty

pe=abstract

Wang Y. Wnt/Planar cell polarity signaling:

a new paradigm for cancer therapy.

Mol Cancer Ther [Internet]. 2009 Aug

[cited 2015 Feb 19];8(8):2103-9. Disponible

en: http://mct.aacrjournals.org/

content/8/8/2103.full

Weeraratna AT, Jiang Y, Hostetter G,

Rosenblatt K, Duray P, Bittner M, et al.

Wnt5a signaling directly affects cell motility

and invasion of metastatic melanoma.

Cancer Cell [Internet]. 2002 Apr

[cited 2015 May 2];1(3):279-88. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/12086864

Kurayoshi M, Oue N, Yamamoto H,

Kishida M, Inoue A, Asahara T, et al.

Expression of Wnt-5a is correlated

with aggressiveness of gastric cancer

by stimulating cell migration and invasion.

Cancer Res [Internet]. 2006 Nov

[cited 2015 May 2];66(21):10439-48.Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/17079465

Pukrop T, Klemm F, Hagemann T, Gradl D,

Schulz M, Siemes S, et al. Wnt 5a signaling

is critical for macrophage-induced invasion

of breast cancer cell lines. Proc Natl Acad

Sci U S A [Internet]. 2006 Apr 4 [cited

May 2];103(14):5454-9. Disponible

en: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=1459376&tool=pmc

entrez&rendertype=abstract

Medina A, Reintsch W, Steinbeisser H.

Xenopus frizzled 7 can act in canonical

and non-canonical Wnt signaling pathways:

implications on early patterning

and morphogenesis. Mech Dev [Internet].

Apr [cited 2015 May 2];92(2):227-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/10727861

Kinoshita N, Iioka H, Miyakoshi A,

Ueno N. PKC delta is essential for Dishevelled

function in a noncanonical Wnt

pathway that regulates Xenopus convergent

extension movements. Genes Dev

[Internet]. 2003 Jul 1 [cited 2015 May

;17(13):1663-76. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=196137&tool=pmcentrez

&rendertype=abstract

Li Y, Dudley AT. Noncanonical frizzled

signaling regulates cell polarity of

growth plate chondrocytes. Development

[Internet]. 2009 Apr [cited 2015 May

;136(7):1083-92. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2685929&tool=pmcentrez

&rendertype=abstract

Merle P, de la Monte S, Kim M, Herrmann

M, Tanaka S, Von Dem Bussche

A, et al. Functional consequences of

frizzled-7 receptor overexpression in

human hepatocellular carcinoma. Gastroenterology

[Internet]. 2004 Oct

[cited 2015 May 2];127(4):1110-22. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/15480989

Vincan E, Swain RK, Brabletz T, Steinbeisser

H. Frizzled7 dictates embryonic

morphogenesis: implications for

colorectal cancer progression. Front

Biosci [Internet]. 2007 Jan [cited 2015

May 2];12:4558-67. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Wei Q, Zhao Y, Yang Z-Q, Dong Q-Z,

Dong X-J, Han Y, et al. Dishevelled

family proteins are expressed in nonsmall

cell lung cancer and function differentially

on tumor progression. Lung

Cancer [Internet]. 2008 Nov [cited 2015

May 2];62(2):181-92. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Pasquale EB. Eph-ephrin bidirectional

signaling in physiology and disease.

Cell [Internet]. 2008 Apr 4 [cited 2015

May 2];133(1):38-52. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Campbell TN, Robbins SM. The Eph receptor/

ephrin system: an emerging player

in the invasion game. Curr Issues Mol

Biol [Internet]. 2008 Jan [cited 2015 May

;10(1-2):61-6. Disponible en: http://

www.ncbi.nlm.nih.gov/pubmed/ 18525107

Batlle E, Bacani J, Begthel H, Jonkheer S,

Jonkeer S, Gregorieff A, et al. EphB receptor

activity suppresses colorectal cancer

progression. Nature [Internet]. 2005 Jun

[cited 2015 May 2];435(7045):1126-

Disponible en: http://www.ncbi.nlm.

nih.gov/pubmed/15973414

Noren NK, Foos G, Hauser CA,

Pasquale EB. The EphB4 receptor suppresses

breast cancer cell tumorigenicity

through an Abl-Crk pathway. Nat Cell

Biol [Internet]. 2006 Aug [cited 2015May 2];8(8):815-25. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Miyato H, Tsuno NH, Kitayama J. Semaphorin

C is involved in the progression of

gastric cancer. Cancer Sci [Internet]. 2012

Nov [cited 2015 May 2];103(11):1961-6.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22924992

Tseng C-H, Murray KD, Jou M-F, Hsu

S-M, Cheng H-J, Huang P-H. Sema3E/

plexin-D1 mediated epithelial-to-mesenchymal

transition in ovarian endometrioid

cancer. PLoS One [Internet]. 2011

Jan [cited 2015 May 2];6(4):e19396. Disponible

en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=308485

&tool=pmcentrez&rendertype=abstract

Rehman M, Tamagnone L. Semaphorins

in cancer: biological mechanisms and

therapeutic approaches. Semin Cell Dev

Biol [Internet]. 2013 Mar [cited 2014 Dec

;24(3):179-89. Disponible en: http://

www.ncbi.nlm.nih.gov/pubmed/ 23099250

Neufeld G, Kessler O. The semaphorins:

versatile regulators of tumour progression

and tumour angiogenesis. Nat Rev

Cancer [Internet]. 2008 Aug [cited 2015

Mar 24];8(8):632-45. Disponible en:

http://dx.doi.org/10.1038/nrc2404

Ahmad I, Iwata T, Leung HY. Mechanisms

of FGFR-mediated carcinogenesis.

Biochim Biophys Acta [Internet]. 2012

Apr [cited 2015 May 2];1823(4):850-60.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22273505

Wesche J, Haglund K, Haugsten EM. Fibroblast

growth factors and their receptors

in cancer. Biochem J [Internet]. 2011

Jul 15 [cited 2015 Feb 20];437(2):199-

Disponible en: http://www.ncbi.

nlm.nih.gov/pubmed/21711248

Liu K-W, Hu B, Cheng S-Y. Plateletderived

growth factor receptor alpha

in glioma: a bad seed. Chin J Cancer

[Internet]. 2011 Sep [cited 2015 May

;30(9):590-602. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3543696&tool=pmcentrez

&rendertype=abstract

Kono SA, Heasley LE, Doebele RC,

Camidge DR. Adding to the mix: fibroblast

growth factor and platelet-derived

growth factor receptor pathways as targets

in non-small cell lung cancer. Curr

Cancer Drug Targets [Internet]. 2012 Feb

[cited 2015 May 2];12(2):107-23. Disponible

en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=341822

&tool=pmcentrez&rendertype=abstract

Belmadani A, Tran PB, Ren D, Assimacopoulos

S, Grove EA, Miller RJ. The

chemokine stromal cell-derived factor-1

regulates the migration of sensory neuron

progenitors. J Neurosci [Internet]. 2005

Apr 20 [cited 2015 May 2];25(16):3995-

Disponible en: http://www.ncbi.

nlm.nih.gov/pubmed/15843601

Kasemeier-Kulesa JC, McLennan R,

Romine MH, Kulesa PM, Lefcort F.

CXCR4 controls ventral migration of

sympathetic precursor cells. J Neurosci

[Internet]. 2010 Sep 29 [cited 2015

May 2];30(39):13078-88. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Olesnicky Killian EC, Birkholz DA,

Artinger KB. A role for chemokine signaling

in neural crest cell migration and

craniofacial development. Dev Biol

[Internet]. 2009 Sep 1 [cited 2015 May

;333(1):161-72. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2728170&tool=pmcentrez

&rendertype=abstract

Dewan MZ, Ahmed S, Iwasaki Y, Ohba K,

Toi M, Yamamoto N. Stromal cell-derived

factor-1 and CXCR4 receptor interaction

in tumor growth and metastasis of breast

cancer. Biomed Pharmacother [Internet].

Jul [cited 2015 May 2];60(6):273-6.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/16828253

Kucia M, Reca R, Miekus K, Wanzeck

J, Wojakowski W, Janowska-Wieczorek

A, et al. Trafficking of normal stem

cells and metastasis of cancer stem cells

involve similar mechanisms: pivotal

role of the SDF-1-CXCR4 axis. Stem

Cells [Internet]. 2005 Aug [cited 2015

May 3];23(7):879-94. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Niehrs C, Acebron SP. Mitotic and mitogenic

Wnt signalling. EMBO J [Internet].

Jun 13 [cited 2015 May

;31(12):2705-13. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3380213&tool=pmcentrez

&rendertype=abstract

Ye L, Mason MD, Jiang WG. Bone

morphogenetic protein and bone metastasis,

implication and therapeutic

potential. Front Biosci [Internet]. 2011

Jan [cited 2015 May 9];16:865-97. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/21196208

Miyazono K, Ehata S, Koinuma D. Tumor-

promoting functions of transforming

growth factor-β in progression of cancer.

Ups J Med Sci [Internet]. 2012 May

[cited 2015 May 9];117(2):143-52. Disponible

en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=333954

&tool=pmcentrez&rendertype=abstract

Heldin C-H, Vanlandewijck M, Moustakas

A. Regulation of EMT by TGFβ in

cancer. FEBS Lett [Internet]. 2012 Jul

[cited 2015 May 9];586(14):1959-70.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22710176

Sánchez-Tilló E, Liu Y, de Barrios O,

Siles L, Fanlo L, Cuatrecasas M, et al.

EMT-activating transcription factors in

cancer: beyond EMT and tumor invasiveness.

Cell Mol Life Sci [Internet]. 2012

Oct [cited 2015 Apr 3];69(20):3429-56.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/22945800

Barrallo-Gimeno A, Nieto MA. The Snail

genes as inducers of cell movement and

survival: implications in development

and cancer. Development [Internet]. 2005

Jul [cited 2014 Dec 7];132(14):3151-61.

Disponible en: http://www.ncbi.nlm.nih.

gov/pubmed/15983400

Qin Q, Xu Y, He T, Qin C, Xu J. Normal

and disease-related biological functions of

Twist1 and underlying molecular mechanisms.

Cell Res [Internet]. 2012 Jan [cited

Feb 9];22(1):90-106. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3351934&tool=pmce

ntrez&rendertype=abstract

Castillo SD, Sanchez-Cespedes M. The

SOX family of genes in cancer development:

biological relevance and opportunities

for therapy. Expert Opin Ther

Targets [Internet]. 2012 Sep [cited 2015

May 9];16(9):903-19. Disponible en:

http://www.ncbi.nlm.nih.gov/pubmed/

Wu Y, Zhou BP. Snail: More than EMT.

Cell Adh Migr [Internet]. Jan [cited 2015

May 9];4(2):199-203. Disponible en:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2900613&tool=pmc

entrez&rendertype=abstract

Vega S, Morales A V, Ocaña OH, Valdés

F, Fabregat I, Nieto MA. Snail blocks the

cell cycle and confers resistance to cell

death. Genes Dev [Internet]. 2004 May 15[cited 2015 Apr 25];18(10):1131-43. Disponible

en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=415638&

tool=pmcentrez&rendertype=abstract

Yang J, Mani SA, Donaher JL, Ramaswamy

S, Itzykson RA, Come C, et al.

Twist, a master regulator of morphogenesis,

plays an essential role in tumor

metastasis. Cell [Internet]. 2004 Jun 25

[cited 2015 Mar 10];117(7):927-39. Disponible

en: http://www.ncbi.nlm.nih.gov/

pubmed/15210113

Mascarenhas JB, Littlejohn EL, Wolsky

RJ, Young KP, Nelson M, Salgia R, et

al. PAX3 and SOX10 activate MET receptor

expression in melanoma. Pigment

Cell Melanoma Res [Internet]. 2010 Apr

[cited 2015 May 9];23(2):225-37. Disponible

en: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=297931

&tool=pmcentrez&rendertype=abstract

Seong I, Min HJ, Lee J-H, Yeo C-Y, Kang

DM, Oh E-S, et al. Sox10 controls migration

of B16F10 melanoma cells through

multiple regulatory target genes. PLoS

One [Internet]. 2012 Jan [cited 2015 May

;7(2):e31477. Disponible en: http://

www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3283624&tool=pmcentrez

&rendertype=abstract

Esta revista científica se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad.

El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.