Abstract
The success of the pulpectomy treatment depends on an adequate execution of each of the steps, among them is the chemical-mechanical preparation and for this one of the requirements is to find the real length of the root canal. The objective of our work is to determine the concordance between the root length obtained with the visual and radiographic method and the use of the electronic apical locator (LAE) in primary teeth. Forty primary molars extracted at the Pediatric Dentistry Clinic of the UNNE School of Dentistry were included, including a canal that met the experimental inclusion and exclusion conditions. The canals were measured in vitro aided by the use of direct optical microscopy, to later be corroborated with the values obtained in the radiographic measurements and with the use of the LAE. When submitting the values shown with each measurement technique, the statistical analysis confirmed that the LAE coincided with the measurement obtained directly from the tooth in 79%, whereas for the radiographic measurements the statistically significant coincidence yielded 52% effectiveness. The use of LAE in molars of pediatric patients can be an indispensable method to determine root lengths closer to reality, as well as a better management of the child and fewer exposures to radiation.
Mente J, Seidel J, Buchalla W, Koch MJ. Electronic determination of root canal length in primary teeth with and without root resorption. Int Endod J. 2002. 35: 447-452. https://doi.org/10.1046/j.1365-2591.2002.00500.x
Holan G, Fuks AB. A comparison of pulpectomies using ZOE and KRI paste in primary molars: a retrospective study. Pediatr Dent. 1993 Nov-Dec; 15(6): 403-407.
Kielbassa AM, Muller U, Munz I, Monting JS. Clinical evaluation of the measuring accuracy of ROOT ZX in primary teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003 Jan;95(1):94-100. https://doi.org/10.1067/moe.2003.99
Subramaniam P, Konde S, Mandanna DK. An in vitro comparison of root canal measurement in primary teeth. J Indian Soc Pedod Prev Dent. 2005 Sep; 23(3): 124-125. https://doi.org/10.4103/0970-4388.16883
Bahrololoomi Z, Soleymani AA, Modaresi J, Imanian M, Lotfian M. Accuracy of an Electronic Apex Locator for working length determination in primary anterior teeth. J Dent (Tehran). 2015 Apr; 12(4): 243-248
Paludo L, Souza SL, Só MV, Rosa RA, Vier-Pelisser FV, Duarte MA. An in vivo radiographic evaluation of the accuracy of Apex and iPex electronic Apex locators. Braz Dent J. 2012; 23(1): 54-58. https://doi.org/10.1590/s0103-64402012000100010
Siu C, Marshall JG, Baumgartner JC. An in vivo comparison of the Root ZX II, the Apex NRG XFR, and Mini Apex Locator by using rotary nickel-titanium files. J Endod. 2009 Jul; 35(7): 962-965. https://doi.org/10.1016/j.joen.2009.04.025
Abanto J, Redua PCB, Bonecker M. Paso a paso para conductas clínicas en odontopediatria. Sao Paulo: Santos Publicaçoes 2020, 6: 105.
Baldi JV, Victorino FR, Bernardes RA, de Moraes IG, Bramante CM, Garcia RB, Bernardineli N. Influence of embedding media on the assessment of electronic apex locators. J Endod. 2007 Apr; 33(4): 476-479. https://doi.org/10.1016/j.joen.2006.12.024
Subramaniam P, Konde S, Mandanna DK. An in vitro comparison of root canal measurement in primary teeth. J Indian Soc Pedod Prev Dent. 2005 Sep; 23(3):124-125. https://doi.org/10.4103/0970-4388.16883
Bodur H, Odabaş M, Tulunoğlu O, Tinaz AC. Accuracy of two different apex locators in primary teeth with and without root resorption. Clin Oral Investig. 2008 Jun; 12(2): 137-141. https://doi.org/10.1007/s00784-007-0157-5
Topaloglu-Ak A, Aykut Yetkiner A, Güniz Baksi B, Eronat C. Ex vivo comparison of radiographic and electronic root canal length measurements in primary molars. Eur J Paediatr Dent. 2015 Jun; 16(2): 49-153.
Leonardo MR, Silva LA, Nelson-Filho P, Silva RA, Raffaini MS. Ex vivo evaluation of the accuracy of two electronic apex locators during root canal length determination in primary teeth. Int Endod J. 2008 Apr;41(4):317-21. https://doi.org/10.1111/j.1365-2591.2007.01366.x
Nelson-Filho P, Lucisano MP, Leonardo MR, da Silva RA, da Silva LA. Electronic working length determination in primary teeth by ProPex and digital signal processing. Aust Endod J. 2010 Dec; 36(3): 105-108. https://doi.org/10.1111/j.1747-4477.2009.00185.x
Ahmad IA, Pani SC. Accuracy of electronic apex locators in primary teeth: a meta-analysis. Int Endod J. 2015 Mar;48(3):298-307. https://doi.org/10.1111/iej.12315
Kumar LV, Sreelakshmi N, Reddy ER, Manjula M, Rani ST, Rajesh A. Clinical evaluation of conventional radiography, radiovisiography, and an electronic apex locator in determining the working length in primary teeth. Pediatr Dent. 2016 Jan-Feb;38(1):37-41
Govindaraju L, Jeevanandan G, Subramanian EMG. Comparison of quality of obturation and instrumentation time using hand files and two rotary file systems in primary molars: A single-blinded randomized controlled trial. Eur J Dent. 2017 Jul-Sep; 11(3): 376-379. https://doi.org/10.4103/ejd.ejd_345_16
Senthil D, Eagappan ARS, Sathivajeeva J, Ramkumar S, Srinivasan D, Loui J. Comparison of the accuracy of Propex II electronic apex locator and conventional radiography for working length determination in primary anterior teeth. J Int Oral Health. 2016. 8(6): 729-732. https://doi.org/10.2047/jioh-08-06-17
Toscano MA, Zacharczuk GA. Tratamiento con pasta 3Mix-MP en molares primarios no vitales: estudio preliminar. Bol Asoc Argent Odontol Niños. 2016; 44: 12-17.
Mente J, Seidel J, Buchalla W, Koch MJ. Electronic determination of root canal length in primary teeth with and without root resorption. Int Endod J. 2002 May; 35(5): 447-52. https://doi.org/10.1046/j.1365-2591.2002.00500.x
Abdullah A, Singh N, Rathore MS, Tandon S, Rajkumar B. Comparative evaluation of electronic apex locators and radiovisiography for working length determination in primary teeth in vivo. Int J Clin Pediatr Dent. 2016 Apr-Jun; 9(2): 118-123. https://doi.org/10.5005/jp-journals-10005-1346
Borges MMB, Guimarães BM, Alves JD, Sena GN, Bernardes NA, Duarte MAH. Evaluation of the accuracy of two apex locators in apical limit: an in vitro study. Rev Odontol Bras Central. 2016; 25(74): 126-129.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Maria Lorena Cardoso, Carlos Daniel Lugo De Langhe, Norma Griselda Díaz