Publicado Mar 8, 2010



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar
Descargas


José Arturo Bríñez

Silvio Velásquez

Juan Daniel Gómez

##plugins.themes.bootstrap3.article.details##

Resumen

La memoria de trabajo es un sistema neuro-conductual en el que participan la memoria a corto y a largo plazo, la orientación espacial, la planeación y la ejecución de tareas espaciales y lingüísticas, la adaptación social, las operaciones cognitivas complejas y los logros académicos, y que se ha utilizado para estudiar los cambios cognitivos asociados al envejecimiento.

Keywords

aging, learning, spatial working memory, Wistar rats, cognitive deterioration, envejecimiento, aprendizaje, memoria de trabajo espacial, ratas Wistar, deterioro cognitivo,

References
1. Burns RB. Age and mental ability: retesting with thirty-three years’ interval. Br J Educ Psychol. 1966;36:16.
2. Kramer NA, Jarvik L. Assessment of intellectual changes in the elderly. En: Raskin A, Jarvik L, editors. Psychiatric symptoms and cognitive loss in the elderly. Washington, D.C.: Hemisphere. 1979;221-70.
3. Benton AL, Eslinger PJ, y Damasio AR. Normative observations on neuropsychological test performances in old age. J Clin Neuropsychol. 1981;3:33-42.
4. Craik, FIM. Age differences in human memory. In: Birren JE, Schaie KW, editors. Handbook of the psychology of aging. New York: Van Nostrand Reinhold; 1977;384-420.
5. Lezak, MD. Neuropsychological assessment. Second edition. New York: Oxford University Press; 2004;414-78.
6. Bimonte HA, Nelson ME, Granholm ACE. Age-related deficits as working memory load increases: relationships with growth factors. Neurobiol Aging. 2003;24:37-48.
8. Winocur G, Hasher L. Age and time-ofday effects on learning and memory in a non-matching-to simple test. Neurobiol Aging. 2004;25:1107-15.
9. Buckley TM, Schatzberg AF. Aging and the role of HPA axis and rithm in sleep and memory-consolidation. Am J Geriatr Psychiatry. 2005;13:344-53.
10. Nishizuka M, Katoh-Semba R, Eto K, Arai Y, Hzuka R, Kato K. Age and sexrelated differences in the nerve growth factor distribution in the rat brain. Brain Res Bull. 1991;27:685-8.
11. Savage LM, Pitkin SR, Knitowski KM. Rats exposed to acute pyrithiamineinduced thiamine deficiency are more sensitive to the amnesic effects of scopolamine and MK-801: examination of working
memory, response selection, and reinforcement contingencies. Behav
Brain Res. 1999;104:13-26.
12. Lezak MD, Howieson DB, Loring DW. Neuropsychological assessment, fourth edition. New York: Oxford University Press; 2004.
13. Christensen H, Mackinnon A, Korten AE, Jorm AF, Henderson AS, Jacomb P, Rodgers B. An analysis of diversity in the cognitive performance of elderly community dwellers: Individual differences
in change scores as a function of age. Psychol Aging. 1999;14:365-79.
14. van der Staay FJ. Assessment of ageassociated cognitive deficits in rats: a tricky business. Neurosci Biobehav Rev. 2002;26:753-9.
15. Castner SA, Goldman-Rakic PS, Williams GV. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology. 2004;174:111-25.
16. Marshuetz C. Order information in working memory: an integrative review of evidence from brain and behavior. Psychol Bull. 2005;13:323-9.
17. Isawa C. A new temporary maintenance system, working cognition: A construct to incorporate working memory in unified theories of cognition. Am J Psychol. 2001;114:115-27.
18. Santi A, Weise L. The effects of scopolamine on memory for time in rats and pigeons. Pharmacol Biochem Behav. 1995;51:271-7.
19. Naciones Unidas. Segunda Asamblea Mundial sobre envejecimiento. Madrid: ONU: 2002.
20. Fu AL, Huang SJ, Sun MJ. Complementary remedy of age-related learning and memory deficits via exogenous choline acetyltransferase. Biochem Biophys Res Commun. 2005;336:268-73.
21. Liu P, Smith PF, Appleton I, Darlington CL. Age-related changes in nitric oxide synthasa and arginasa in the rat prefrontal cortex. Neurobiol
Aging. 2004;25:547-52.
22. Lupien SJ, Schwartz, G, Fiacco A, Wan N, Pruessner JC, Meaney MJ, Nair V. The Douglas Hospital longitudinal study of normal and pathological aging: summary and findings. J Psychiatry Neurosci.
2005;30:328-34.
23. Bellis TJ, Nicol T, Kraus N. Aging affects hemispheric asymetry in the neural representation of speech sounds. J Neurosci. 2000;20:791-7.
24. Grady C, MacIntosh AR, Craik FLM. Task-related activity in prefrontal cortex and its relation to recognition memory
performance in young and old adults. Neuropsychology. 2004;43: 1466-81.
25. Stebbins GT, Carrillo MC, Dorman J, Dirksen C, Desoíd J, Turner DA, Bennett DA, Wilson RS, Glover G, Gabrieli DEC. Aging effects on memory encoding in the frontal lobes. Psychol Aging, 2002;17:44-55.
26. Cabeza R, Grady CL, Nyberg, L, MacIntosh AR, Tulving E, Kapur S,
Jennings JM, Houle S, Craik FIM Agerelated differences in neural activity
during memory encoding and retrieval: A positron emission tomography study. J Neurosci. 1997;17:391-400.
27. Nielson KA, Langenecker SA, Garavan HP. Differences in the functional anatomy in the inhibitory control across the adult lifepan. Psychol Aging. 2002;17:56-71.
28. Peters A. The effects of normal aging on myelin and nerve fibers: A review. J Neurocytol. 2000;31:585-93.
29. Barzokis G. Age related myelin breakdown: A developmental model of cognitive decline and Alltzheimer’s disease. Neurobiol Aging. 2004;25:5-18.
30. Bartzokis G, Beckson M, Nuechterlein, Nuechterlein KH, Edwards N, Mintz J. Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58:461-5.
31. Terry RD, Katzman R. Life span and synapsis: Will there be a primary senile dementia? Neurobiol Aging. 2001; 22:347-8.
32. Peters A, Moss MB, Sethares C. The effects of aging on layer of primary visual cortex in the rhesus monkey. Cereb Cortex. 2001;11:93-103.
33. Greenwood PM. Functional plasticity in cognitive aging: Review and hypotheses. Neuropsychology. 2007;21:65773.
34. Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology. 2009;60:173-96.
35. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A. Regional brain changes in aging healthy adults: General trends, individual differences, and modifiers. Cereb Cortex. 2005;15:1676-89.
36. Vaidya JG, Paradiso S, Boles-Ponto LL, McCormick LM, Robinson RG. Aging, gray matter, and blood flow in the anterior cingulated cortex. NeuroImage. 2007;37:1346-53.
37. Baddeley A. Working memory. Science. 1992;255:556.
38. Morgado I. Psicobiología del aprendizaje y la memoria: fundamentos y avances recientes. Revista de Neurología. 2005;40:289-97.
39. Olton DS. Characteristics of spatial memory. En: Hulse S, Flower HH, Honig WK, editors. Cognitive processes in animal behavior. Hillsdale, New Jersey: Lawrence Erlbaum. 1978;341-71.
40. Baddeley A, Hitch, G. Working memory. En: Bower GH. editor. The
psychology of learning and motivation. New York: Academic Press; 1974;7108.
41. Baddeley A, Hitch G. Developments in the concept of working memory. Neuropsychology. 1994;8:485-99.
42. Repovs G, Baddeley A. The multicomponent model of working memory: Explorations in experimental cognitive psychology.
Neuroscience. 2006;139: 5-21.
43. Unsword N, Engle RW. The nature of individual differences in working
memory capacity: Active maintenance in primary memory and controlled
search from secondary memory. Psychol Rev. 2007;114:104-32.
44. Thompson JA. Is continuous visual monitoring really necessary in visually guided locomotion? J Exp Psychol Hum Percept Perform. 1983;9:427-43. 45. Crawford JD. The relationships between tests of sustained attention and fluid intelligence. Pers Indiv Diff. 2000;
12:599-611.
46. Carroll JB. Human cognitive abilities: a survey of factor-analytic studies. New York: Cambridge University Press; 1993.
47. Hatano G, Osawa K. Digit memory of grand experts in abacus derived mental calculation. Cognition. 1983;15: 95-110.
48. De Jong PF, Das-Smaal EA. Attention and intelligence. The validity of the star counting test. J Educ Psychol. 2004; 87:80-92.
49. Granon S, Vidal C, Thinus-Blanc C, Changeux JP, Poucet B. Working
memory, response selection and effortful processing in rats with medial
prefrontal lesions. Behav Neurosci. 1994;108:883-91.
50. Sims NR, Smith CCT, Davison AN, Bowen DM, Flack RHA, Snowden JS, Neary D. Glucose metabolism and ace-tylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet. 1980;I:333-6.
51. Phillips AG, Ahn S, Floresco SB. Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delay response task. J Neurosci. 1994;24:547-53.
52. Lamirault L, Simon H. Enhancement of place and object recognition memory in young adult and old rats by RS 67333, a partial agonist of 5-HT receptors. Neuropharmacology. 2001; 41:844-53.
53. Flood JF, Morley JE, Roberts E. Memory-enhancing effects in male
mice of pregnenolone and steroids metabolically drived from it. Proc Natl Acad Sci USA. 1992;89:1567-71.
54. Wooley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci.1992; 12:2549-54.
55. Molteni R, Wu A, Vaynman S, Ying BZ, Gómez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of
brain-derived neurotrophic factor. Neuroscience. 2004;123:429-40.
56. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded in basic research. Nat Rev Neurosci. 2002;3:228-36.
57. Picciotto MR, Zoli M. Nicotinic receptors in aging and dementia.
J Neurobiol. 2002;53:641-55.
58. Hao J, Rapp P, Leffler AE, Leffler SR, Jansen WG, Lou W, et al. Estrogen alters spine number and morphology in prefrontal
cortex of aged females rhesus monkeys. J Neurosci. 2006;26:
2571-8.
59. Smith DE, Roberts J, Gage FH, Tuszynski MH. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA. 1999;96:10893-8.
60. Rosenzweig MR, Bennett EL. Psychobiology of plasticity: Effects of training and experience on brain and behavior. Behav Brain Res. 1996; 78:57-65.
61. Shintaro F, Kazuyoshi T. What information is represented by prefrontal neuronal activity? Int Congr Ser. 2003;1250:93-104.
62. Gazzaley A, Rissman J, D’Esposito M. Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci. 2004;4:580-99.
63. Grady CL, MacIntosh AR, Horwitz B, Rapoport SI. Age-related changes in the neural correlates of degraded and nondegraded
face processing. Cogn Neuropsychol. 2000;217:165-86.
64. Srimel R, Curtis CE. Persistent neural activity during the maintenance of spatial position in working memory. NeuroImage. 2007;39:455-68.
65. Fuster JM, Alexander GE. Neurons activity related to short–term memory. Science. 1971;173:652-4.
66. Pessoa L, Ungerleider LG. Neural correlates of change detection and change blindness in a working memory task. Cereb Cortex. 2004;14:511-21.
67. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training in working memory. Nat
Neurosci. 2004;7:75-9.
68. Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28:771-84.
69. Squire LR. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99:195-231.
70. Eichenbaum H, Otto T, Cohen NJ. Two component functions of the hippocampal memory system. Behav Brain Sci. 2004;17:449-517.
71. Davidson RJ. Affective style, psychopathology and resilience: brain
mechanisms and plasticity. American Psychologist. 2004; 55:1196-214.
72. Liu P, Bilkey DK. The effect of excitotoxic lesions centered in the hippocampus or perirhinal cortex in object recognition and spatial memory tasks. Behav Neurosci. 2001;115:94111.
73. Ruchkin DS, Grafman J, Cameron K, Berndt RS. Working memory retention system: a state of activated long-term memory. Behavioral and Brain Sciences. 2003;26:709-77. 74. Byatt G, Dalrymple-Alford JC. Both anteromedial and anteroventral thalamic lesions impair radial- maze learning in rats. Behav Neurosci. 2001; 110:1335-48.
75. Hayter A, Langdom DW, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36:94354.
76. FELASA. Recomendaciones de FELASA sobre los estudios y la formación de las personas que trabajan con animales de laboratorios. Lab Anim. 1995;29: 121-31.
77. Oades RD. Impairments of search behavior in rats after haloperidol treatment, hippocampal or neocortical damage suggest a mesocorticolimbic role in cognition. Biol Psychol. 1981; 12:77-85.
Cómo citar
Bríñez, J. A., Velásquez, S., & Gómez, J. D. (2010). Deterioro cognitivo y envejecimiento: no hay evidencia de deterioro gradual de la memoria de trabajo, dependiente de la edad, en la rata Wistar. Universitas Medica, 51(2), 120–142. https://doi.org/10.11144/Javeriana.umed51-2.dceh
Sección
Artículos originales