Publicado May 25, 2016


Google Scholar
Search GoogleScholar

Maira Moreno Castillo

Julian Ramírez Cheyne

Sebastian Medina Cárdenas



Introducción: Evidencias moleculares y celulares muestran mecanismos comunes entre la migración de las células de la cresta neural (CCN) y la metástasis en las células cancerosas. La delaminación de las CCN implica una transición epitelio-mesénquima (TEM) parcial o completa, la cual es regulada por una compleja red de factores de transcripción. Métodos: Se realizó una revisión de la literatura acerca de las similitudes existentes entre los procesos de delaminación de las CCN y la progresión tumoral.
Resultados y conclusiones: El proceso de TEM es clave tanto en la morfogénesis
embrionaria como en la progresión de tumores primarios hacia tumores metastásicos, por lo que comprender cómo se dan los cambios que conducen a la migración celular constituye una importante herramienta para encaminar futuras alternativas terapeúticas en neurocristopatías y cáncer.


cresta neural, cáncer, metástasisNeural crest, cancer, metastasis

1. Crane JF, Trainor PA. Neural cres stem
and progenitor cells. Annu Rev Cell Dev
Biol [Internet]. Annual Reviews; 2006 Jan
9 [cited 2015 Apr 18]; 22:267-86. Disponible
en: http://www.annualreviews.
dat=cr_pub %3Dpubmed&rfr_id=ori %3
Arid %3Acrossreforg&journalCode=cell

2. Achilleos A, Trainor PA. Neural crest
stem cells: discovery, properties and potential
for therapy. Cell Res [Internet].
2012 Feb [cited 2015 Apr 18];22(2):288-
304. Disponible en: http://www.pubmedcentral.

3. Kuriyama S, Mayor R. Molecular analysis
of neural crest migration. Philos Trans R
Soc Lond B Biol Sci [Internet]. 2008 Apr
12 [cited 2015 Apr 18];363(1495):1349-
62. Disponible en: http://www.pubmedcentral.

4. Huang X, Saint-Jeannet J-P. Induction
of the neural crest and the opportunities
of life on the edge. Dev Biol [Internet].
2004 Nov 1 [cited 2015 Apr 6];275(1):1-
11. Disponible en: http://www.ncbi.nlm.

5. Kulesa PM, Kasemeier-Kulesa JC, Teddy
JM, Margaryan N V., Seftor EA, Seftor
REB, et al. Reprogramming metastatic
melanoma cells to assume a neural
crest cell-like phenotype in an embryonic
microenvironment. Proc Natl Acad
Sci [Internet]. 2006 Feb 27 [cited 2015
Apr 18];103(10):3752-7. Disponible en:

6. Powell DR, O’Brien JH, Ford HL, Artinger
KB. Neural Crest Cells [Internet].
Neural Crest Cells. Elsevier; 2014 [cited
2015 Sep 6]. 335-357 p. Disponible en:

7. Chambers AF, Groom AC, MacDonald
IC. Dissemination and growth of cancer
cells in metastatic sites. Nat Rev Cancer
[Internet]. 2002 Aug [cited 2014
Jul 14];2(8):563-72. Disponible en:

8. Royer C, Lu X. Epithelial cell polarity:
a major gatekeeper against cancer? Cell
Death Differ [Internet]. 2011 Sep [cited 2015 Feb 14];18(9):1470-7. Disponible

9. Powell DR, O’Brien JH, Ford HL AK.
Neural Crest Cells and Cancer: Insights
into Tumor Progression. In: Trainor PA,
editor. Neural crest cells: evolution, development
and disease. 1st ed. San Diego,
CA: Academic Press; 2014. p. 335-57.

10. Humbert PO, Grzeschik NA, Brumby
AM, Galea R, Elsum I, Richardson HE.
Control of tumourigenesis by the Scribble/
Dlg/Lgl polarity module. Oncogene
[Internet]. 2008 Nov 24 [cited 2015
Mar 2];27(55):6888-907. Disponible en:

11. Lee M, Vasioukhin V. Cell polarity
and cancer-cell and tissue polarity
as a non-canonical tumor suppressor. J
Cell Sci [Internet]. 2008 Apr 15 [cited
2015 Jan 8];121(Pt 8):1141-50. Disponible

12. Whiteman EL, Liu C-J, Fearon ER, Margolis
B. The transcription factor snail represses
Crumbs3 expression and disrupts
apico-basal polarity complexes. Oncogene
[Internet]. 2008 Jun 19 [cited 2015
Mar 29];27(27):3875-9. Disponible en:

13. Zhan L, Rosenberg A, Bergami KC, Yu
M, Xuan Z, Jaffe AB, et al. Deregulation
of scribble promotes mammary tumorigenesis
and reveals a role for cell polarity
in carcinoma. Cell [Internet]. 2008 Nov
28 [cited 2015 Jan 29];135(5):865-78.
Disponible en:

14. Pearson HB, Perez-Mancera PA, Dow
LE, Ryan A, Tennstedt P, Bogani D, et al.
SCRIB expression is deregulated in human
prostate cancer, and its deficiency in
mice promotes prostate neoplasia. J Clin
Invest [Internet]. 2011 Nov 1 [cited 2015
Jan 29];121(11):4257-67. Disponible en:

15. Dow LE, Elsum IA, King CL, Kinross
KM, Richardson HE, Humbert PO. Loss
of human Scribble cooperates with H-Ras
to promote cell invasion through deregulation
of MAPK signalling. Oncogene
[Internet]. 2008 Oct 9 [cited 2015 Jan
29];27(46):5988-6001. Disponible en:

16. Wu M, Pastor-Pareja JC, Xu T. Interaction
between Ras(V12) and scribbled
clones induces tumour growth and invasion.
Nature [Internet]. 2010 Jan 28
[cited 2014 Dec 11];463(7280):545-8.
Disponible en:

17. Nakagawa S, Yano T, Nakagawa K,
Takizawa S, Suzuki Y, Yasugi T, et al.
Analysis of the expression and localisation
of a LAP protein, human scribble,
in the normal and neoplastic epithelium
of uterine cervix. Br J Cancer [Internet].
2004 Jan 12 [cited 2015 Jan
29];90(1):194-9. Disponible en: http://

18. Kuphal S, Wallner S, Schimanski CC,
Bataille F, Hofer P, Strand S, et al.
Expression of Hugl-1 is strongly reduced
in malignant melanoma. Oncogene
[Internet]. 2006 Jan 5 [cited 2015
Jan 29];25(1):103-10. Disponible en:

19. Storrs CH, Silverstein SJ. PATJ, a tight
junction-associated PDZ protein, is anovel degradation target of high-risk
human papillomavirus E6 and the alternatively
spliced isoform 18 E6. J Virol
[Internet]. 2007 Apr [cited 2015 Apr
10];81(8):4080-90. Disponible en: http://

20. Michel D, Arsanto J-P, Massey-Harroche
D, Béclin C, Wijnholds J, Le
Bivic A. PATJ connects and stabilizes
apical and lateral components of tight
junctions in human intestinal cells. J
Cell Sci [Internet]. 2005 Sep 1 [cited
2015 Jan 29];118(Pt 17):4049-57. Disponible

21. Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi
N, Mitsufuji S, et al. Defective
expression of polarity protein
PAR-3 gene (PARD3) in esophageal
squamous cell carcinoma. Oncogene
[Internet]. 2009 Aug 13 [cited 2015 Jan
30];28(32):2910-8. Disponible en: http://

22. Xue B, Krishnamurthy K, Allred DC,
Muthuswamy SK. Loss of Par3 promotes
breast cancer metastasis by compromising
cell-cell cohesion. Nat Cell
Biol [Internet]. 2013 Mar [cited 2015
Jan 30];15(2):189-200. Disponible en:

23. Ellenbroek SIJ, Iden S, Collard JG.
Cell polarity proteins and cancer. Semin
Cancer Biol [Internet]. 2012 Jun
[cited 2015 Apr 19];22(3):208-15. Disponible

24. Nolan ME, Aranda V, Lee S, Lakshmi
B, Basu S, Allred DC, et al. The polarity
protein Par6 induces cell proliferation
and is overexpressed in breast cancer.
Cancer Res [Internet]. 2008 Oct 15 [cited
2015 Apr 19];68(20):8201-9. Disponible

25. Ross, M. H., Romrell, L. J., and Kaye
GIH. Histology: A Text and Atlas. 5th ed.
Baltimore: Williams & Wilkins; 2006. p.

26. 26. Halbleib JM, Nelson WJ. Cadherins
in development: cell adhesion, sorting,
and tissue morphogenesis. Genes Dev
[Internet]. 2006 Dec 1 [cited 2014 Nov
11];20(23):3199-214. Disponible en:

27. Yang J, Weinberg R a. Epithelial-mesenchymal
transition: at the crossroads of
development and tumor metastasis. Dev
Cell. 2008;14:818-29.

28. Jeanes A, Gottardi CJ, Yap AS. Cadherins
and cancer: how does cadherin dysfunction
promote tumor progression? Oncogene
[Internet]. 2008 Nov 24 [cited 2015
Jan 29];27(55):6920-9. Disponible en:

29. Peinado H, Portillo F, Cano A. Transcriptional
regulation of cadherins during development
and carcinogenesis. Int J Dev
Biol [Internet]. 2004 Jan [cited 2015
Apr 4];48(5-6):365-75. Disponible en:

30. Schmalhofer O, Brabletz S, Brabletz T.
E-cadherin, beta-catenin, and ZEB1 in
malignant progression of cancer. Cancer
Metastasis Rev [Internet]. 2009 Jun
[cited 2015 Jan 29];28(1-2):151-66. Disponible

31. Valenta T, Hausmann G, Basler K. The
many faces and functions of β-catenin.
EMBO J [Internet]. 2012 Jun 13 [cited
2014 Oct 28];31(12):2714-36. Disponible

32. Perl AK, Wilgenbus P, Dahl U, Semb H,
Christofori G. A causal role for E-cadherin
in the transition from adenoma to
carcinoma. Nature [Internet]. 1998 Mar
12 [cited 2015 Jan 29];392(6672):190-
3. Disponible en:

33. Onder TT, Gupta PB, Mani SA, Yang J,
Lander ES, Weinberg RA. Loss of E-cadherin
promotes metastasis via multiple
downstream transcriptional pathways.
Cancer Res [Internet]. 2008 May 15 [cited
2014 Sep 15];68(10):3645-54. Disponible
en: http://cancerres.aacrjournals.

34. El Moneim HMA, Zaghloul NM. Expression
of E-cadherin, N-cadherin and
snail and their correlation with clinicopathological
variants: an immunohistochemical
study of 132 invasive ductal
breast carcinomas in Egypt. Clinics (Sao
Paulo) [Internet]. 2011 Jan [cited 2015
Jan 29];66(10):1765-71. Disponible en:

35. Elzagheid A, Buhmeida A, Laato M, El-
Faitori O, Syrjänen K, Collan Y, et al.
Loss of E-cadherin expression predicts
disease recurrence and shorter survival in
colorectal carcinoma. APMIS [Internet].
2012 Jul [cited 2015 Jan 29];120(7):539-
48. Disponible en: http://www.ncbi.nlm.

36. Dunbier A, Guilford P. Hereditary diffuse
gastric cancer. Adv Cancer Res [Internet].
2001 Jan [cited 2015 Apr 18];83:55-
65. Disponible en: http://www.ncbi.nlm.

37. Kovacs A. Expression of P-cadherin, but
not E-cadherin or N-cadherin, relates
to pathological and functional differentiation
of breast carcinomas. Mol Pathol
[Internet]. 2003 Dec 1 [cited 2015 Jan
29];56(6):318-22. Disponible en: http://

38. Bussemakers MJ, Van Bokhoven A, Tomita
K, Jansen CF, Schalken JA. Complex
cadherin expression in human prostate
cancer cells. Int J Cancer [Internet]. 2000
Mar 1 [cited 2015 Jan 29];85(3):446-50.
Disponible en: http://www.ncbi.nlm.nih.

39. Derycke LDM, Bracke ME. N-cadherin
in the spotlight of cell-cell adhesion, differentiation,
embryogenesis, invasion and
signalling. Int J Dev Biol [Internet]. 2004
Jan [cited 2015 Apr 19];48(5-6):463-76.
Disponible en: http://www.ncbi.nlm.nih.

40. Ramis-Conde I, Chaplain MAJ, Anderson
ARA, Drasdo D. Multi-scale modelling
of cancer cell intravasation: the
role of cadherins in metastasis. Phys
Biol [Internet]. 2009 Jan [cited 2015
Apr 19];6(1):016008. Disponible en:

41. Paul R, Necknig U, Busch R, Ewing
CM, Hartung R, Isaacs WB. Cadherin-6:
a new prognostic marker for renal cell
carcinoma. J Urol [Internet]. 2004 Jan 1
[cited 2015 Jan 29];171(1):97-101. Disponible

42. Shoval I, Ludwig A, Kalcheim C. Antagonistic
roles of full-length N-cadherin
and its soluble BMP cleavage product
in neural crest delamination. Development [Internet]. 2007 Feb [cited 2015
Jan 7];134(3):491-501. Disponible en:

43. Lammens T, Swerts K, Derycke L, De
Craemer A, De Brouwer S, De Preter K,
et al. N-cadherin in neuroblastoma disease:
expression and clinical significance.
PLoS One [Internet]. 2012 Jan 15 [cited
2015 Jan 29];7(2):e31206. Disponible

44. Berx G, van Roy F. Involvement of
members of the cadherin superfamily in
cancer. Cold Spring Harb Perspect Biol
[Internet]. 2009 Sep 23 [cited 2015 Apr
4];1(6):a003129-a003129. Disponible

45. Tomita K, van Bokhoven A, van Leenders
GJ, Ruijter ET, Jansen CF, Bussemakers
MJ, et al. Cadherin switching in human
prostate cancer progression. Cancer Res
[Internet]. 2000 Jul 1 [cited 2015 Apr
19];60(13):3650-4. Disponible en:http://

46. Chu K, Cheng C-J, Ye X, Lee Y-C, Zurita
AJ, Chen D-T, et al. Cadherin-11 promotes
the metastasis of prostate cancer cells to
bone. Mol Cancer Res [Internet]. 2008
Aug 1 [cited 2015 Apr 18];6(8):1259-67.
Disponible en: http://mcr.aacrjournals.

47. Tamura D, Hiraga T, Myoui A, Yoshikawa
H, Yoneda T. Cadherin-11-mediated
interactions with bone marrow stromal/
osteoblastic cells support selective colonization
of breast cancer cells in bone. Int
J Oncol [Internet]. 2008 Jul [cited 2015
Apr 19];33(1):17-24. Disponible en:

48. Carmona FJ, Villanueva A, Vidal A,
Muñoz C, Puertas S, Penin RM, et al.
Epigenetic disruption of cadherin-11
in human cancer metastasis. J Pathol
[Internet]. 2012 Oct [cited 2015 Jan
29];228(2):230-40. Disponible en: http://

49. Li L, Ying J, Li H, Zhang Y, Shu X, Fan
Y, et al. The human cadherin 11 is a proapoptotic
tumor suppressor modulating
cell stemness through Wnt/β-catenin
signaling and silenced in common carcinomas.
Oncogene [Internet]. 2012 Aug
23 [cited 2015 Jan 29];31(34):3901-12.
Disponible en:

50. Fishwick KJ, Neiderer TE, Jhingory S,
Bronner ME, Taneyhill LA. The tight
junction protein claudin-1 influences cranial
neural crest cell emigration. Mech
Dev [Internet]. 2012 Jan [cited 2015 Jan
26];129(9-12):275-83. Disponible en:

51. Wu C-Y, Jhingory S, Taneyhill LA. The
tight junction scaffolding protein cingulin
regulates neural crest cell migration.
Dev Dyn [Internet]. 2011 Oct [cited 2015
Jan 29];240(10):2309-23. Disponible en:

52. Czyż J, Szpak K, Madeja Z. The role
of connexins in prostate cancer promotion
and progression. Nat Rev Urol
[Internet]. 2012 May [cited 2015 Jan
29];9(5):274-82. Disponible en: http://

53. El-Saghir JA, El-Habre ET, El-Sabban
ME, Talhouk RS. Connexins: a junctional
crossroad to breast cancer. Int
J Dev Biol [Internet]. 2011 Jan [cited
2015 Jan 29];55(7-9):773-80. Disponible

54. Osanai M, Murata M, Nishikiori N, Chiba
H, Kojima T, Sawada N. Epigenetic
silencing of occludin promotes tumorigenic
and metastatic properties of cancer
cells via modulations of unique sets
of apoptosis-associated genes. Cancer
Res [Internet]. 2006 Sep 15 [cited 2015
Apr 11];66(18):9125-33. Disponible en:

55. Martin TA, Mansel RE, Jiang WG.
Loss of occludin leads to the progression
of human breast cancer. Int J Mol
Med [Internet]. 2010 Nov 1 [cited 2015
Jan 29];26(5):723-34. Disponible en:

56. Clay MR, Halloran MC. Regulation of
cell adhesions and motility during initiation
of neural crest migration. Curr Opin
Neurobiol [Internet]. 2011 Feb [cited
2015 Feb 16];21(1):17-22. Disponible

57. Kamai T, Tsujii T, Arai K, Takagi K, Asami
H, Ito Y, et al. Significant Association
of Rho/ROCK Pathway with Invasion
and Metastasis of Bladder Cancer. Clin
Cancer Res [Internet]. 2003 Jul 1 [cited
2015 Feb 22];9(7):2632-41. Disponible

58. Schmidt A, Hall MN. Signaling to the
actin cytoskeleton. Annu Rev Cell Dev
Biol [Internet]. 1998 Jan [cited 2015 Mar
26];14:305-38. Disponible en: http://

59. Khosravi-Far R, Campbell S, Rossman
KL, Der CJ. Increasing complexity of
Ras signal transduction: involvement of
Rho family proteins. Adv Cancer Res
[Internet]. 1998 Jan [cited 2015 Apr
26];72:57-107. Disponible en: http://

60. Benitah SA, Valerón PF, van Aelst L,
Marshall CJ, Lacal JC. Rho GTPases in
human cancer: an unresolved link to upstream
and downstream transcriptional
regulation. Biochim Biophys Acta [Internet].
2004 Dec 17 [cited 2015 Apr
4];1705(2):121-32. Disponible en: http://

61. Shoval I, Kalcheim C. Antagonistic activities
of Rho and Rac GTPases underlie the
transition from neural crest delamination
to migration. Dev Dyn [Internet]. 2012
Jul [cited 2015 Jan 30];241(7):1155-68.
Disponible en: http://www.ncbi.nlm.nih.

62. Groysman M, Shoval I, Kalcheim C.
A negative modulatory role for rho and
rho-associated kinase signaling in delamination
of neural crest cells. Neural
Dev [Internet]. 2008 Jan [cited 2015 Jan
30];3(1):27. Disponible en: http://www.

63. Vega FM, Ridley AJ. Rho GTPases
in cancer cell biology. FEBS Lett [Internet].
2008 Jun 18 [cited 2015 Apr
26];582(14):2093-101. Disponible en:

64. Hakem A, Sanchez-Sweatman O, You-
Ten A, Duncan G, Wakeham A, Khokha
R, et al. RhoC is dispensable for embryogenesis
and tumor initiation but
essential for metastasis. Genes Dev
[Internet]. 2005 Sep 1 [cited 2015 Apr
4];19(17):1974-9. Disponible en: http://

65. Bellovin DI, Simpson KJ, Danilov T,
Maynard E, Rimm DL, Oettgen P, et al.
Reciprocal regulation of RhoA and RhoC
characterizes the EMT and identifies
RhoC as a prognostic marker of colon
carcinoma. Oncogene [Internet]. 2006
Nov 2 [cited 2015 Apr 4];25(52):6959-67. Disponible en: http://www.ncbi.nlm.

66. Merajver SD, Usmani SZ. Multifaceted
role of Rho proteins in angiogenesis.
J Mammary Gland Biol
Neoplasia [Internet]. 2005 Oct [cited
2015 Apr 4];10(4):291-8. Disponible en:

67. Huang M, Prendergast GC. RhoB
in cancer suppression. Histol Histopathol
[Internet]. 2006 Feb [cited 2015
Apr 4];21(2):213-8. Disponible en:

68. Sandilands E, Akbarzadeh S, Vecchione
A, McEwan DG, Frame MC, Heath
JK. Src kinase modulates the activation,
transport and signalling dynamics of fibroblast
growth factor receptors. EMBO
Rep [Internet]. EMBO Press; 2007 Dec
1 [cited 2015 Apr 4];8(12):1162-9. Disponible

69. Pan Y, Bi F, Liu N, Xue Y, Yao X, Zheng
Y, et al. Expression of seven main Rho
family members in gastric carcinoma.
Biochem Biophys Res Commun [Internet].
2004 Mar 12 [cited 2015 Jan
31];315(3):686-91. Disponible en: http://

70. Kamai T, Yamanishi T, Shirataki H, Takagi
K, Asami H, Ito Y, et al. Overexpression
of RhoA, Rac1, and Cdc42 GTPases
is associated with progression in testicular
cancer. Clin Cancer Res [Internet]. 2004
Jul 15 [cited 2015 Jan 31];10(14):4799-
805. Disponible en: http://clincancerres.

71. Espina C, Céspedes MV, García-Cabezas
MA, Gómez del Pulgar MT, Boluda A,
Oroz LG, et al. A critical role for Rac1
in tumor progression of human colorectal
adenocarcinoma cells. Am J Pathol
[Internet]. 2008 Jan [cited 2015 Mar
11];172(1):156-66. Disponible en: http://

72. Wang Z, Pedersen E, Basse A, Lefever
T, Peyrollier K, Kapoor S, et al. Rac1
is crucial for Ras-dependent skin tumor
formation by controlling Pak1-Mek-Erk
hyperactivation and hyperproliferation
in vivo. Oncogene [Internet]. 2010 Jun
10 [cited 2015 Jan 28];29(23):3362-73.
Disponible en:

73. Jaffe AB, Hall A. Rho GTPases: biochemistry
and biology. Annu Rev Cell
Dev Biol [Internet]. 2005 Jan [cited
2014 Aug 29];21:247-69. Disponible en:

74. Chuang Y, Valster A, Coniglio SJ, Backer
JM, Symons M. The atypical Rho family
GTPase Wrch-1 regulates focal adhesion
formation and cell migration.
J Cell Sci [Internet]. 2007 Jul 1 [cited
2015 Jan 31];120(Pt 11):1927-34. Disponible

75. Aronheim A, Broder YC, Cohen A,
Fritsch A, Belisle B, Abo A. Chp, a
homologue of the GTPase Cdc42Hs,
activates the JNK pathway and is implicated
in reorganizing the actin cytoskeleton.
Curr Biol [Internet]. 1998 Oct 8 [cited 2015 Apr 4];8(20):1125-8. Disponible

76. Rozario T, DeSimone DW. The extracellular
matrix in development and morphogenesis:
a dynamic view. Dev Biol
[Internet]. 2010 May 1 [cited 2015 Mar
17];341(1):126-40. Disponible en: http://

77. Cai DH, Vollberg TM, Hahn-Dantona E,
Quigley JP, Brauer PR. MMP-2 expression
during early avian cardiac and neural
crest morphogenesis. Anat Rec [Internet].
2000 Jul 1 [cited 2015 Jan 31];259(2):168-79. Disponible en: http://www.ncbi.nlm.

78. Monsonego-Ornan E, Kosonovsky J, Bar
A, Roth L, Fraggi-Rankis V, Simsa S, et al.
Matrix metalloproteinase 9/gelatinase B
is required for neural crest cell migration.
Dev Biol [Internet]. 2012 May 15 [cited
2015 Jan 31];364(2):162-77. Disponible

79. Giambernardi TA, Sakaguchi AY, Gluhak
J, Pavlin D, Troyer DA, Das G, et al. Neutrophil
collagenase (MMP-8) is expressed
during early development in neural crest
cells as well as in adult melanoma cells.
Matrix Biol [Internet]. 2001 Dec [cited
2015 Jan 31];20(8):577-87. Disponible

80. Alfandari D, Wolfsberg TG, White JM,
DeSimone DW. ADAM 13: a novel
ADAM expressed in somitic mesoderm
and neural crest cells during
Xenopus laevis development. Dev Biol
[Internet]. 1997 Mar 15 [cited 2015 Jan
31];182(2):314-30. Disponible en: http://

81. Hanahan D, Weinberg RA. The Hallmarks
of Cancer. Cell [Internet]. 2000
Jan 7 [cited 2014 Jul 9];100(1):57-70.
Disponible en:

82. Kast RE, Halatsch M-E. Matrix metalloproteinase-
2 and -9 in glioblastoma:
a trio of old drugs-captopril, disulfiram
and nelfinavir-are inhibitors with potential
as adjunctive treatments in glioblastoma.
Arch Med Res [Internet]. 2012
Apr [cited 2015 May 2];43(3):243-7.
Disponible en: http://www.ncbi.nlm.nih.

83. Hofmann UB, Houben R, Bröcker E-B,
Becker JC. Role of matrix metalloproteinases
in melanoma cell invasion. Biochimie
[Internet]. 2005 Jan [cited 2015
Feb 1];87(3-4):307-14. Disponible en:

84. Turpeenniemi-Hujanen T. Gelatinases
(MMP-2 and -9) and their natural inhibitors
as prognostic indicators in solid cancers.
Biochimie [Internet]. 2005 Jan [cited
2015 Feb 1];87(3-4):287-97. Disponible

85. Bauvois B. New facets of matrix metalloproteinases
MMP-2 and MMP-9 as cell
surface transducers: outside-in signaling
and relationship to tumor progression.
Biochim Biophys Acta [Internet]. 2012
Jan [cited 2015 Jan 15];1825(1):29 36.
Disponible en: http://www.sciencedirect.

86. Murphy G. The ADAMs: signalling scissors
in the tumour microenvironment.
Nat Rev Cancer [Internet]. 2008 Dec
[cited 2015 Feb 19];8(12):929-41. Disponible

87. Gialeli C, Theocharis AD, Karamanos
NK. Roles of matrix metalloproteinases
in cancer progression and their pharmacological
targeting. FEBS J [Internet].
2011 Jan [cited 2015 May 2];278(1):16-
27. Disponible en: http://www.ncbi.nlm.

88. Ganguly KK, Pal S, Moulik S, Chatterjee
A. Integrins and metastasis. Cell
Adh Migr [Internet]. Jan [cited 2015 Apr
12];7(3):251-61. Disponible en: http://

89. Imanishi Y, Hu B, Jarzynka MJ, Guo P,
Elishaev E, Bar-Joseph I, et al. Angiopoietin-
2 stimulates breast cancer metastasis
through the alpha(5)beta(1) integrin-mediated
pathway. Cancer Res [Internet]. 2007
May 1 [cited 2015 Feb 1];67(9):4254-63.
Disponible en: http://cancerres.aacrjournals.

90. Barkan D, Chambers AF. β1-integrin: a
potential therapeutic target in the battle
against cancer recurrence. Clin Cancer
Res [Internet]. 2011 Dec 1 [cited 2015
Feb 1];17(23):7219-23. Disponible en:

91. Vladar EK, Antic D, Axelrod JD. Planar
cell polarity signaling: the developing
cell’s compass. Cold Spring Harb Perspect
Biol [Internet]. 2009 Sep 1 [cited
2015 Mar 27];1(3):a002964. Disponible

92. Clay MR, Halloran MC. Regulation of
cell adhesions and motility during initiation
of neural crest migration. Curr Opin
Neurobiol [Internet]. 2011 Feb [cited
2015 Feb 16];21(1):17-22. Disponible

93. De Calisto J, Araya C, Marchant L, Riaz
CF, Mayor R. Essential role of noncanonical
Wnt signalling in neural crest
migration. Development [Internet]. 2005
Jun [cited 2015 May 2];132(11):2587-97.
Disponible en: http://www.ncbi.nlm.nih.

94. Jessen JR. Noncanonical Wnt signaling in
tumor progression and metastasis. Zebrafish
[Internet]. 2009 Mar [cited 2015 May
2];6(1):21-8. Disponible en: http://www.

95. Kho AT, Zhao Q, Cai Z, Butte AJ, Kim
JYH, Pomeroy SL, et al. Conserved
mechanisms across development and
tumorigenesis revealed by a mouse development
perspective of human cancers.
Genes Dev [Internet]. 2004 Mar
15 [cited 2015 May 2];18(6):629-40.
Disponible en: http://www.pubmedcentral.

96. Wang Y. Wnt/Planar cell polarity signaling:
a new paradigm for cancer therapy.
Mol Cancer Ther [Internet]. 2009 Aug
1 [cited 2015 Feb 19];8(8):2103-9. Disponible

97. Weeraratna AT, Jiang Y, Hostetter G,
Rosenblatt K, Duray P, Bittner M, et al.
Wnt5a signaling directly affects cell motility
and invasion of metastatic melanoma.
Cancer Cell [Internet]. 2002 Apr
[cited 2015 May 2];1(3):279-88. Disponible

98. Kurayoshi M, Oue N, Yamamoto H,
Kishida M, Inoue A, Asahara T, et al.
Expression of Wnt-5a is correlated
with aggressiveness of gastric cancer
by stimulating cell migration and invasion.
Cancer Res [Internet]. 2006 Nov
1 [cited 2015 May 2];66(21):10439-48.Disponible en: http://www.ncbi.nlm.nih.

99. Pukrop T, Klemm F, Hagemann T, Gradl D,
Schulz M, Siemes S, et al. Wnt 5a signaling
is critical for macrophage-induced invasion
of breast cancer cell lines. Proc Natl Acad
Sci U S A [Internet]. 2006 Apr 4 [cited
2015 May 2];103(14):5454-9. Disponible

100. Medina A, Reintsch W, Steinbeisser H.
Xenopus frizzled 7 can act in canonical
and non-canonical Wnt signaling pathways:
implications on early patterning
and morphogenesis. Mech Dev [Internet].
2000 Apr [cited 2015 May 2];92(2):227-
37. Disponible en: http://www.ncbi.nlm.

101. Kinoshita N, Iioka H, Miyakoshi A,
Ueno N. PKC delta is essential for Dishevelled
function in a noncanonical Wnt
pathway that regulates Xenopus convergent
extension movements. Genes Dev
[Internet]. 2003 Jul 1 [cited 2015 May
2];17(13):1663-76. Disponible en: http://

102. Li Y, Dudley AT. Noncanonical frizzled
signaling regulates cell polarity of
growth plate chondrocytes. Development
[Internet]. 2009 Apr [cited 2015 May
2];136(7):1083-92. Disponible en: http://

103. Merle P, de la Monte S, Kim M, Herrmann
M, Tanaka S, Von Dem Bussche
A, et al. Functional consequences of
frizzled-7 receptor overexpression in
human hepatocellular carcinoma. Gastroenterology
[Internet]. 2004 Oct
[cited 2015 May 2];127(4):1110-22. Disponible

104. Vincan E, Swain RK, Brabletz T, Steinbeisser
H. Frizzled7 dictates embryonic
morphogenesis: implications for
colorectal cancer progression. Front
Biosci [Internet]. 2007 Jan [cited 2015
May 2];12:4558-67. Disponible en:

105. Wei Q, Zhao Y, Yang Z-Q, Dong Q-Z,
Dong X-J, Han Y, et al. Dishevelled
family proteins are expressed in nonsmall
cell lung cancer and function differentially
on tumor progression. Lung
Cancer [Internet]. 2008 Nov [cited 2015
May 2];62(2):181-92. Disponible en:

106. Pasquale EB. Eph-ephrin bidirectional
signaling in physiology and disease.
Cell [Internet]. 2008 Apr 4 [cited 2015
May 2];133(1):38-52. Disponible en:

107. Campbell TN, Robbins SM. The Eph receptor/
ephrin system: an emerging player
in the invasion game. Curr Issues Mol
Biol [Internet]. 2008 Jan [cited 2015 May
2];10(1-2):61-6. Disponible en: http:// 18525107

108. Batlle E, Bacani J, Begthel H, Jonkheer S,
Jonkeer S, Gregorieff A, et al. EphB receptor
activity suppresses colorectal cancer
progression. Nature [Internet]. 2005 Jun
23 [cited 2015 May 2];435(7045):1126-
30. Disponible en: http://www.ncbi.nlm.

109. Noren NK, Foos G, Hauser CA,
Pasquale EB. The EphB4 receptor suppresses
breast cancer cell tumorigenicity
through an Abl-Crk pathway. Nat Cell
Biol [Internet]. 2006 Aug [cited 2015May 2];8(8):815-25. Disponible en:

110. Miyato H, Tsuno NH, Kitayama J. Semaphorin
3C is involved in the progression of
gastric cancer. Cancer Sci [Internet]. 2012
Nov [cited 2015 May 2];103(11):1961-6.
Disponible en: http://www.ncbi.nlm.nih.

111. Tseng C-H, Murray KD, Jou M-F, Hsu
S-M, Cheng H-J, Huang P-H. Sema3E/
plexin-D1 mediated epithelial-to-mesenchymal
transition in ovarian endometrioid
cancer. PLoS One [Internet]. 2011
Jan [cited 2015 May 2];6(4):e19396. Disponible
en: http://www.pubmedcentral.

112. Rehman M, Tamagnone L. Semaphorins
in cancer: biological mechanisms and
therapeutic approaches. Semin Cell Dev
Biol [Internet]. 2013 Mar [cited 2014 Dec
26];24(3):179-89. Disponible en: http:// 23099250

113. Neufeld G, Kessler O. The semaphorins:
versatile regulators of tumour progression
and tumour angiogenesis. Nat Rev
Cancer [Internet]. 2008 Aug [cited 2015
Mar 24];8(8):632-45. Disponible en:

114. Ahmad I, Iwata T, Leung HY. Mechanisms
of FGFR-mediated carcinogenesis.
Biochim Biophys Acta [Internet]. 2012
Apr [cited 2015 May 2];1823(4):850-60.
Disponible en: http://www.ncbi.nlm.nih.

115. Wesche J, Haglund K, Haugsten EM. Fibroblast
growth factors and their receptors
in cancer. Biochem J [Internet]. 2011
Jul 15 [cited 2015 Feb 20];437(2):199-
213. Disponible en: http://www.ncbi.

116. Liu K-W, Hu B, Cheng S-Y. Plateletderived
growth factor receptor alpha
in glioma: a bad seed. Chin J Cancer
[Internet]. 2011 Sep [cited 2015 May
2];30(9):590-602. Disponible en: http://

117. Kono SA, Heasley LE, Doebele RC,
Camidge DR. Adding to the mix: fibroblast
growth factor and platelet-derived
growth factor receptor pathways as targets
in non-small cell lung cancer. Curr
Cancer Drug Targets [Internet]. 2012 Feb
[cited 2015 May 2];12(2):107-23. Disponible
en: http://www.pubmedcentral.

118. Belmadani A, Tran PB, Ren D, Assimacopoulos
S, Grove EA, Miller RJ. The
chemokine stromal cell-derived factor-1
regulates the migration of sensory neuron
progenitors. J Neurosci [Internet]. 2005
Apr 20 [cited 2015 May 2];25(16):3995-
4003. Disponible en: http://www.ncbi.

119. Kasemeier-Kulesa JC, McLennan R,
Romine MH, Kulesa PM, Lefcort F.
CXCR4 controls ventral migration of
sympathetic precursor cells. J Neurosci
[Internet]. 2010 Sep 29 [cited 2015
May 2];30(39):13078-88. Disponible en:

120. Olesnicky Killian EC, Birkholz DA,
Artinger KB. A role for chemokine signaling
in neural crest cell migration and
craniofacial development. Dev Biol
[Internet]. 2009 Sep 1 [cited 2015 May
2];333(1):161-72. Disponible en: http://

121. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K,
Toi M, Yamamoto N. Stromal cell-derived
factor-1 and CXCR4 receptor interaction
in tumor growth and metastasis of breast
cancer. Biomed Pharmacother [Internet].
2006 Jul [cited 2015 May 2];60(6):273-6.
Disponible en: http://www.ncbi.nlm.nih.

122. Kucia M, Reca R, Miekus K, Wanzeck
J, Wojakowski W, Janowska-Wieczorek
A, et al. Trafficking of normal stem
cells and metastasis of cancer stem cells
involve similar mechanisms: pivotal
role of the SDF-1-CXCR4 axis. Stem
Cells [Internet]. 2005 Aug [cited 2015
May 3];23(7):879-94. Disponible en:

123. Niehrs C, Acebron SP. Mitotic and mitogenic
Wnt signalling. EMBO J [Internet].
2012 Jun 13 [cited 2015 May
9];31(12):2705-13. Disponible en: http://

124. Ye L, Mason MD, Jiang WG. Bone
morphogenetic protein and bone metastasis,
implication and therapeutic
potential. Front Biosci [Internet]. 2011
Jan [cited 2015 May 9];16:865-97. Disponible

125. Miyazono K, Ehata S, Koinuma D. Tumor-
promoting functions of transforming
growth factor-β in progression of cancer.
Ups J Med Sci [Internet]. 2012 May
[cited 2015 May 9];117(2):143-52. Disponible
en: http://www.pubmedcentral.

126. Heldin C-H, Vanlandewijck M, Moustakas
A. Regulation of EMT by TGFβ in
cancer. FEBS Lett [Internet]. 2012 Jul
4 [cited 2015 May 9];586(14):1959-70.
Disponible en: http://www.ncbi.nlm.nih.

127. Sánchez-Tilló E, Liu Y, de Barrios O,
Siles L, Fanlo L, Cuatrecasas M, et al.
EMT-activating transcription factors in
cancer: beyond EMT and tumor invasiveness.
Cell Mol Life Sci [Internet]. 2012
Oct [cited 2015 Apr 3];69(20):3429-56.
Disponible en: http://www.ncbi.nlm.nih.

128. Barrallo-Gimeno A, Nieto MA. The Snail
genes as inducers of cell movement and
survival: implications in development
and cancer. Development [Internet]. 2005
Jul [cited 2014 Dec 7];132(14):3151-61.
Disponible en: http://www.ncbi.nlm.nih.

129. Qin Q, Xu Y, He T, Qin C, Xu J. Normal
and disease-related biological functions of
Twist1 and underlying molecular mechanisms.
Cell Res [Internet]. 2012 Jan [cited
2015 Feb 9];22(1):90-106. Disponible en:

130. Castillo SD, Sanchez-Cespedes M. The
SOX family of genes in cancer development:
biological relevance and opportunities
for therapy. Expert Opin Ther
Targets [Internet]. 2012 Sep [cited 2015
May 9];16(9):903-19. Disponible en:

131. Wu Y, Zhou BP. Snail: More than EMT.
Cell Adh Migr [Internet]. Jan [cited 2015
May 9];4(2):199-203. Disponible en:

132. Vega S, Morales A V, Ocaña OH, Valdés
F, Fabregat I, Nieto MA. Snail blocks the
cell cycle and confers resistance to cell
death. Genes Dev [Internet]. 2004 May 15[cited 2015 Apr 25];18(10):1131-43. Disponible
en: http://www.pubmedcentral.

133. Yang J, Mani SA, Donaher JL, Ramaswamy
S, Itzykson RA, Come C, et al.
Twist, a master regulator of morphogenesis,
plays an essential role in tumor
metastasis. Cell [Internet]. 2004 Jun 25
[cited 2015 Mar 10];117(7):927-39. Disponible

134. Mascarenhas JB, Littlejohn EL, Wolsky
RJ, Young KP, Nelson M, Salgia R, et
al. PAX3 and SOX10 activate MET receptor
expression in melanoma. Pigment
Cell Melanoma Res [Internet]. 2010 Apr
[cited 2015 May 9];23(2):225-37. Disponible
en: http://www.pubmedcentral.

135. Seong I, Min HJ, Lee J-H, Yeo C-Y, Kang
DM, Oh E-S, et al. Sox10 controls migration
of B16F10 melanoma cells through
multiple regulatory target genes. PLoS
One [Internet]. 2012 Jan [cited 2015 May
9];7(2):e31477. Disponible en: http://
Cómo citar
Moreno Castillo, M., Ramírez Cheyne, J., & Medina Cárdenas, S. (2016). Transición epitelio-mesénquima y migración celular en células de la cresta neural y células metastásicas de carcinomas. Revisión de la literatura. Universitas Médica, 57(1), 83-107.
Artículos de revisión