Fibrosis pulmonar en infección por SARSCoV- 2: ¿qué sabemos hasta ahora? ¿Qué podemos esperar?
##plugins.themes.bootstrap3.article.details##
La infección por SARS-CoV-2 le ha traído grandes retos al personal de salud durante 2020. Aprender sobre su comportamiento, fisiopatología, afectación pulmonar y su progresión a síndrome de dificultad respiratoria aguda (SDRA), además de las intervenciones farmacológicas y la mortalidad, han representado un desafío científico en los centros de atención especializada. No obstante, y a pesar de los avances sobre la infección aguda, poco se conoce respecto a las potenciales secuelas posteriores a la infección leve, moderada o severa por SARS-CoV-2, entre ellas la posible afectación fibrosante del parénquima pulmonar, que de acuerdo con la experiencia sobre infecciones por otros coronavirus (síndrome respiratorio agudo severo y síndrome respiratorio de Oriente Medio) y otras causas de SDRA, puede ser una de las complicaciones más severas y con mayor impacto en la calidad de vida y en la funcionalidad de las personas, una vez superada la infección. En este artículo se revisa la evidencia disponible sobre el desarrollo de la enfermedad pulmonar intersticial de tipo fibrosante asociada con la infección por SARS-CoV-2, los posibles mecanismos fisiopatológicos, los hallazgos imagenológicos y el plan de manejo propuesto hasta el momento, especialmente en términos de rehabilitación integral de estos pacientes.
Pulmonary fibrosis, SARS-Cov2, Covid 19, Pulmonary RehabilitationFibrosis pulmonar, SARS-Cov2, Covid 19, Rehabilitación Pulmonar
2. Tse GM-K. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J Clin Pathol. 1 de marzo de 2004;57(3):260-5
3. Xie LX, Liu YN, Fan BX, Xiao YY, Tian Q, Chen LG, Zhao H, Chen WJ. Dynamic changes of serum SARS-Coronavirus IgG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respir Res 2005; 6:5
4. Antonio GE, Wong KT, Hui DS et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology 2003; 228: 810–5.
5. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J (2005) Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18:1–10
6. Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, Sung JJY. 2005. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 128:2247–2261
7. Chapman HA (2004) Disorders of lung matrix remodeling. J Clin Invest 113:148–157
8. Gharaee-Kermani M, Gyetko MR, Hu B, Phan SH (2007) New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis: a potential role for stem cells in the lung parenchyma and implications for therapy. (Pharm Res 24:819–841)
9. Zuo w, Zhao x, Chen Y. SARS Coronavirus and lung fibrosis. Molecular Biology of the SARS Coronavirus 2009:247-258
10. Molecular Biology by the SARS-Cronavirus. Springer Heidelberg Dordrecht, London New York. Chapter 15: SARS Coronavirus and Lung Fibrosis. Pag. 247- 258. ISBN: 978-3-642-03682-8 e-ISBN: 978-3-642-03683-5. DOI: 10.1007/978-3-642-03683-5)
11. Derynck R, Miyazono K (2008) The TGF-beta family. Cold Spring Harbor Laboratory, Cold Spring Harbor
12. Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, Willich N, Rube C (2000) Dosedependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 47:1033–1042)
13. Derynck R, Akhurst RJ (2007) Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9:1000–1004
14. Pang BS, Wang Z, Zhang LM, Tong ZH, Xu LL, Huang XX, Guo WJ, Zhu M, Wang C, Li XW et al (2003) Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin Med J 116:1283–1287
15. Baas et al. 2006 Baas T, Taubenberger JK, Chong PY, Chui P, Katze MG (2006) SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. J Interferon Cytokine Res 26:309–317
16. Kuba K, Imai Y, Penninger JM (2006a) Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 6:271–276
17. Gonzalez‑Jaramillo N, Low N· Franco OH. The double burden of disease of COVID‑19 in cardiovascular patients: overlapping conditions could lead to overlapping treatments. Eur J Epidemiol 2020; 35:335–337.
18. Ding M, Zhang Q, Li Q, Wu T, Huang Y-z, Correlation analysis of the severity and clinical prognosis of 32 cases of patients with COVID-19, Respiratory Medicine (2020), doi: https:// doi.org/10.1016/j.rmed.2020.105981
19. Marshall R, Bellingan G, Laurent G. The acute respiratory distress syndrome: fibrosis in the fast lane. Thorax. 1 de octubre de 1998;53(10):815-7.
20. Burnham EL, Janssen WJ, Riches DWH, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 1 de enero de 2014;43(1):276-85
21. Gaohong Sheng, MD; Peng Chen, MD, PhD; Yanqiu Wei, MD; Huihui Yue, MD; Jiaojiao Chu, MD;Jianping Zhao, MD, PhD; Yihua Wang, MD, PhD; Wanguang Zhang, MD, PhD; and Hui-Lan Zhang, MD, PhD- Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis. A Meta-Analysis. CHEST 2020; 157(5):1175-1187
22. Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J. 7 de mayo de 2020;2001217
23. Yu M, Liu Y, Xu D, Zhang R, Lan L, Xu H. Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia. Korean J Radiol. 2020 Jun;21(6):746-755.
24. Lei P, Fan B, Mao J, Wei J, Wang P. The progression of computed tomographic (CT) images in patients with coronavirus disease (COVID-19) pneumonia: Running title: The CT progression of COVID-19 pneumonia. J Infect. 2020 Jun;80(6):e30-e31
25. Shang Y, Xu C, Jiang F, Huang R, Li Y, Zhou Y, Xu F, Dai H. Clinical characteristics and changes of chest CT features in 307 patients with common COVID-19 pneumonia infected SARS-CoV-2: A multicenter study in Jiangsu, China. Int J Infect Dis. 2020 May 8;96:157-162.
26. Hu Q, Guan H, Sun Z, Huang L, Chen C, Ai T, Pan Y, Xia L. Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China. Eur J Radiol. 2020 Apr 19;128:109017.
27. Dai H, Zhang X, Xia J, Zhang T, Shang Y, Huang R, Liu R, Wang D, Li M, Wu J, Xu Q, Li Y. High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with COVID-19 in Jiangsu, China. Int J Infect Dis. 2020 Apr 6;95:106-11.
28. Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, Myers L. Radiology Perspective of Coronavirus Disease 2019 (COVID-19): Lessons From Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Am J Roentgenol. mayo de 2020;214(5):1078-82.)
29. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. Mayo de 2020; S2213260020302253
30. Saha A, Vaidya PJ, Chavhan VB, Achlerkar A, Leuppi JD, Chhajed PN. Combined pirfenidone, azithromycin and prednisolone in post-H1N1 ARDS pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2018;35:85-90
31. Chang C-H, Juan Y-H, Hu H-C, Kao K-C, Lee C-S. Reversal of lung fibrosis: an unexpected finding in survivor of acute respiratory distress syndrome. QJM Int J Med. 1 de enero de 2018;111(1):47-8)
32. Rockey DC, Bell PD, Hill JA. Fibrosis — A Common Pathway to Organ Injury and Failure. Longo DL, editor. N Engl J Med. 19 de marzo de 2015;372(12):1138-49
33. Young Goo Song and Hyoung-Shik Shin. COVID-19 A Clinical Syndrome Manifesting as Hypersensitivity Pneumonitis, Infect Chemother. 2020 Mar;52(1):110-112 https://doi.org/10.3947/ic.2020.52.1.110 pISSN 2093-2340·eISSN 2092-6448
34. Chen J-Y, Qiao K, Liu F, Wu B, Xu X, Jiao G-Q, et al. Lung transplantation as therapeutic option in acute respiratory distress syndrome for COVID-19-related pulmonary fibrosis: Chin Med J (Engl). abril de 2020;1
35. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 15 de octubre de 2013;188(8):e13-64.)
36. Ms H, Am C, Cm T, A M-M, N D-G, F A-S, et al. One-year Outcomes in Survivors of the Acute Respiratory Distress Syndrome [Internet]. Vol. 348, The New England journal of medicine. N Engl J Med; 2003 [citado 24 de mayo de 2020]. Disponible en: http://pubmed.ncbi.nlm.nih.gov/12594312/.
37. Hm L, Gy N, Ay J, Ew L, Eh S, Ds H. A Randomised Controlled Trial of the Effectiveness of an Exercise Training Program in Patients Recovering From Severe Acute Respiratory Syndrome [Internet]. Vol. 51, The Australian journal of physiotherapy. Aust J Physiother; 2005 [citado 24 de mayo de 2020]. Disponible en: http://pubmed.ncbi.nlm.nih.gov/16321128/)
38. Yang L-L, Yang T. Pulmonary Rehabilitation for Patients with Coronavirus Disease 2019 (COVID-19). Chronic Dis Transl Med [Internet]. 14 de mayo de 2020 [citado 24 de mayo de 2020];
Disponible en: http://www.sciencedirect.com/science/article/pii/S2095882X20300414)
39. British Thoracic Society Guidance on Respiratory Follow Up of Patients with a Clinico-Radiological Diagnosis of COVID-19 Pneumonia - Buscar con Google [Internet]. [citado 24 de mayo de 2020]. Disponible en: https://www.google.com/search?client=firefox-b-d&q=British+Thoracic+Society+Guidance+on+Respiratory+Follow+Up+of+Patients+with+a+Clinico-Radiological+Diagnosis+of+COVID-19+Pneumonia)
40. Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, et al.Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med 2020. May 15, 2020 https://doi.org/10.1016/ S2213-2600(20)30222-8)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.