Uso de redes neuronales artificiales en predicción de morfología mandibular a través de variables craneomaxilares en una vista posteroanterior / Use of Artificial Neural Networks for Mandibular Morphology Prediction through Craniomaxillar Variables...

Archivos suplementarios

PDF

Palabras clave

antropología forense
inteligencia artificial
mandíbula
odontología forense
predicción
redes neuronales artificiales

Cómo citar

Uso de redes neuronales artificiales en predicción de morfología mandibular a través de variables craneomaxilares en una vista posteroanterior / Use of Artificial Neural Networks for Mandibular Morphology Prediction through Craniomaxillar Variables.. (2016). Universitas Odontologica, 35(74), 21-28. https://doi.org/10.11144/Javeriana.uo35-74.urna
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Resumen

RESUMEN. 

Antecedentes: La predicción de la morfología mandibular es importante tanto en la reconstrucción facial con fines forenses, como en ortodoncia y cirugía maxilofacial. Dicho proceso se ha realizado a través de métodos paramétricos y lineales basándose en poblaciones caucásicas. Asimismo, dichos análisis se realizan en radiografías de perfil más no se tiene en cuenta una predicción mandibular desde una vista posteroanterior. Propósito: Predecir, a través de redes neuronales artificiales, la morfología mandibular, empleando medidas craneomaxilares en radiografías posteroanteriores. Métodos: Se recolectaron 229 radiografías postero-anteriores estandarizadas de adultos jóvenes colombianos de ambos sexos. Se usaron coordenadas de puntos de referencia óseos craneofaciales para formar medidas mandibulares y craneomaxilares. Se seleccionaron 17 variables predictoras craneomaxilares de entrada, midiendo anchuras, alturas y ángulos. De la misma manera se seleccionaron 13 medidas mandibulares a predecir, considerando tanto el lado derecho como el izquierdo. Se usaron redes neuronales artificiales para realizar el proceso de predicción y se evaluó a través de un coeficiente de correlación, por medio de una regresión de arista (ridge regression) entre el valor real y el valor predicho. Resultados: Los resultados encontrados dentro del modelo fueron significativos en especial para 5 variables de importancia morfológica dentro del campo forense: la rama mandibular derecha (Cdd-God), el ancho bigoníaco (Goi-God), el ancho bicondilar (Cdi-Cdd) y las distancias entre los cóndilos al mentón (Cdd-Me y Cdi-Me). Conclusión: se encontró una capacidad de predicción importante en 5 medidas de importancia forense en pacientes clase I, clase II y clase III esquelética en ambos sexos.

 

Infante Contreras C, López LA. Uso de Técnicas multivariadas para la clasificación de estructuras óseas craneanas: una aplicación en medicina forense. Bogotá, Colombia: Universidad Nacional de Colombia; 2003.

Guevara S, Infante-Contreras C, González FA. Uso de redes neuronales en la predicción de la morfología mandibular: aplicación forense. Bogotá, Colombia: Universidad Nacional de Colombia; 2006.

Sanggarnjanavanich S, Sekiya T, Nomura Y, Nakayama T, Hanada N, Nakamura Y. Cranial-base morphology in adults with skeletal Class III malocclusion. Am J Orthod Dentofacial Orthoped. 2014 Jul; 146(1): 82-91.

Lu CH, Ko EW, Liu L. Improving the video imaging prediction of postsurgical facial profiles with an artificial neural network. J Dent Sci. 2009 Sep; 4(3): 118-29.

Pathak KA, Agarwal R, Deshpande MS. Marginal mandibulectomy for lateral sulcus tumours. Eur J Surg Oncol. 2004 Sep; 30(7): 804-6.

Corsini MM, Schmitt A, Bruzek J. Aging process variability on the human skeleton: artificial network as an appropriate tool for age at death assessment. Forensic Sci Int. 2005 Mar; 148(2-3): 163-7.

Huete MI, Ibáñez O, Wilkinson C, Kahana T. Past, present, and future of craniofacial superimposition: Literature and international surveys. Leg Med. 2015 Jul; 17(4): 267-78.

Coughlan KM. Simulating craniofacial growth. Ottawa, Canada: Université d’Ottawa; 1992.

Equipo colombiano interdisciplinario de trabajo forense y asistencia psicosocial. Apreciaciones a las exhumaciones e investigaciones forenses realizadas por la Unidad Nacional de Justicia y Paz de la Fiscalía General de la Nación. Bogotá, Colombia: Fiscalía General de la Nación; 2006.

Morales V, Martínez WA, Molano CP, Novoa NA, González CM, Pineda MT, et al. Informe de rendición de cuentas a los ciudadanos año 2011. Fiscalía General de la Nación. Bogotá, Colombia: Imprenta Nacional; 2012.

Bilge Y, Kedici PS, Alakoç YD, Ülküer KÜ, Ilkyaz YY. The identification of a dismembered human body: a multidisciplinary approach. Forensic Sci Int. 2003 Nov; 137(2-3): 141-6.

Benazzi S, Fantini M, De Crescenzio F, Mallegni G, Mallegni F, Persiani F, Gruppioni F. The face of the poet Dante Alighieri reconstructed by virtual modelling and forensic anthropology techniques. J Archaeol Sci. 2009 Feb; 36(2): 278-83.

Aulsebrook WA, Iscan MY, Slabbert JH, Becker P. Superimposition and reconstruction in forensic facial identification: a survey. Forensic Sci Int. 1995 Oct; 75(2-3): 101-20.

De Greef S, Claes P, Vandermeulen D, Mollemans W, Suetens P, Willems G. Large-scale in-vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction. Forensic Sci Int. 2006 May; 159(Suppl 1): S126-46.

Castro N, Infante-Contreras C, Muñoz J. Modelo de identificación de patrones del tercio medio facial en clase I, II y III esquelética: un análisis morfogeométrico. Bogotá, Colombia: Universidad Nacional de Colombia; 2012.

Thilander B, Pena L, Infante C, Parada SS, de Mayorga C. Prevalence of malocclusion and orthodontic treatment need in children and adolescents in Bogota, Colombia. An epidemiological study related to different stages of dental development. Eur J Orthod. 2001 Apr; 23(2): 153-67.

Claes P, Vandermeulen D, De Greef S, Willems G, Clement JG, Suetens P. Computerized craniofacial reconstruction: Conceptual framework and review. Forensic Sci Int. 2010 Sep; 201(1-3): 138-45.

Lin C-C, Ou Y-K, Chen S-H, Liu Y-C, Lin J. Comparison of artificial neural network and logistic regression models for predicting mortality in elderly patients with hip fracture. Injury. 2010 Aug; 41(8): 869-73.

Jiang J, Trundle P, Ren J. Medical image analysis with artificial neural networks. Comput Med Imag Graph. 2010 Dec; 34(8): 617-31.

Prescher A, Meyers A, Keyserlingk DGv. Neural net applied to anthropological material: A methodical study on the human nasal skeleton. Ann Anat. 2005 Jul; 187(3): 261-9.

Egmont-Petersen M, de Ridder D, Handels H. Image processing with neural networks-a review. Pattern Recogn. 2002 Oct; 35(10): 2279-301.

Wen UP, Lan KM, Shih HS. A review of Hopfield neural networks for solving mathematical programming problems. Eur J Oper Res. 2009 Nov; 198(3): 675-87.

Giraldo MD, Hoyos JG. Control por redes neuronales de base radial y planos deslizantes. Scientia et Technica. 2004 Dic; 10(26): 43-6.

Ferreyra A. Redes Neuronales difusas para modelado vía agrupamiento en línea: aplicación a un condensador de aspiración. México, DF: Instituto Politécnico Nacional; 2005.

Glüge S, Böck R, Palm G, Wendemuth A. Learning long-term dependencies in segmented-memory recurrent neural networks with backpropagation of error. Neurocomputing. 2014 Oct; 141(0): 54-64.

Wei JT, Zhang Z, Barnhill SD, Madyastha KR, Zhang H, Oesterling JE. Understanding artificial neural networks and exploring their potential applications for the practicing urologist. Urol. 1998 Aug; 52(2): 161-72.

Resino S, Seoane JA, Bellon JM, Dorado J, Martin-Sanchez F, Alvarez E, Cosín J, López JC, López G, Miralles P, Berenguer J. An artificial neural network improves the non-invasive diagnosis of significant fibrosis in HIV/HCV coinfected patients. J Infect. 2011 Jan; 62(1): 77-86.

Bloedorn E, Mani I. Using NLP for machine learning of user profiles. Intell Data Anal. 1998 Jan; 2(1-4): 3-18.

República de Colombia, Ministerio de Salud. Normas científicas, técnicas y administrativas para la investigación en salud. Resolución N.o 008430 de 1993. Ley N.o 84 de 1989. Constitución Nacional de Colombia. Bogotá, Colombia: Ministerio de Salud; 1993.

Niño-Sandoval TC, Guevara S, González F, Jaque A, Infante C. Uso de técnicas de aprendizaje automatizado para predicción de morfología mandibular en clase I, II y III Esquelética. Bogotá, Colombia: Universidad Nacional de Colombia; 2012.

Steiner C. The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod Dentofacial Orthoped. 1960 Oct; 46(10): 721-35.

Grummons DC, Kappeyne van de Coppello MA. A frontal asymmetry analysis. J Clin Orthod. 1987 Jul; 21(7): 448-65.

Rubio G, Zapata A. Fundamentos de la odontología. Ortodoncia. Bogotá, Colombia: Pontificia Universidad Javeriana; 2002.

Yoon YJ, Perkiomaki MR, Tallents RH, Barillas I, Herrera-Guido R, Fong CT, Kyrkanides S. Transverse craniofacial features and their genetic predisposition in families with nonsyndromic unilateral cleft lip and palate. Cleft Palate Craniofac J. 2004 May; 41(3): 256-61.

Trpkova B, Prasad NG, Lam EWN, Raboud D, Glover KE, Major PW. Assessment of facial asymmetries from posteroanterior cephalograms: validity of reference lines. Am J Orthod Dentofacial Orthoped. 2003 May; 123(5): 512-20.

Lisboa PJ, Taktak AF. The use of artificial neural networks in decision support in cancer: A systematic review. Neural Network. 2006 May; 19(4): 408-15.

Mario MC, Abe JM, Ortega NR, Del Santo M, Jr. Paraconsistent artificial neural network as auxiliary in cephalometric diagnosis. Artif Organs. 2010 Jul; 34(7): E215-21.

Kano T, Oritani S, Michiue T, Ishikawa T, Hishmat AM, Sogawa N, et al. Postmortem CT morphometry with a proposal of novel parameters for sex discrimination of the mandible using Japanese adult data. Leg Med. 2015 May; 17(3): 167-71.

Ahn SJ, Lee SP, Nahm DS. Relationship between temporomandibular joint internal derangement and facial asymmetry in women. Am J Orthod Dentofac Orthop. 2005 Nov; 128(5): 583-91.

Puişoru M, Forna N, Fătu AM, Fătu R, Fătu C. Analysis of mandibular variability in humans of different geographic areas. Ann Anat. 2006 Nov; 188(6): 547-54.

Esta revista científica se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional. Por lo tanto, esta obra se puede reproducir, distribuir y comunicar públicamente en formato digital, siempre que se reconozca el nombre de los autores y a la Pontificia Universidad Javeriana. Se permite citar, adaptar, transformar, autoarchivar, republicar y crear a partir del material, para cualquier finalidad (incluso comercial), siempre que se reconozca adecuadamente la autoría, se proporcione un enlace a la obra original y se indique si se han realizado cambios. La Pontificia Universidad Javeriana no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad.

El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista y la Pontificia Universidad Javeriana se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores. En consecuencia de la protección brindada por la licencia de uso, la revista no se encuentra en la obligación de publicar retractaciones o modificar la información ya publicada, a no ser que la errata surja del proceso de gestión editorial. La publicación de contenidos en esta revista no representa regalías para los contribuyentes.