Publicado oct 28, 2013

Google Scholar
Search GoogleScholar

Sandra Janeth Gutiérrez Prieto

Dabeiba Adriana García Robayo

Stephanie Santacoloma Jiménez

Juan Pablo Mejía Barbosa



La etiología de la caries dental es una preocupación permanente en la investigación odontológica. La caries, reconocida como una de las enfermedades más antiguas, se caracteriza por ser crónica, infecciosa, no contagiosa y de origen multifactorial, con gran impacto en la salud pública. Hoy en día, además de todos los factores involucrados en la tríada de la caries, se ha encontrado que también los factores genéticos y posiblemente epigenéticos podrían contribuir a incrementar el riesgo y susceptibilidad a la caries. Entre estos están la variación en los factores inherentes al huésped, como la herencia, los trastornos en la formación del esmalte y la dentina, la respuesta inmune alterada a microrganismos cariogénicos y su asociación con el antígeno leucocitario humano. El propósito de este artículo es analizar la relación que podría existir entre la etiología de la caries dental y la genética y cómo desde la epigenética también podrían interpretarse algunas de sus causas.


The etiology of dental caries is a constant concern in dental research. Recognized as one of the oldest diseases, dental caries is a chronic, infectious, non-contagious, multifactorial disease that has a high impact on public health. Today, besides all the factors involved in the triad of caries, it has been found that genetic and epigenetic factors could contribute to increase the risk and susceptibility to caries. It includes variations of factors inherent to the host, such as heredity, abnormal enamel and dentin formation, altered immune response to cariogenic microorganisms and their association with the human leukocyte antigen. The purpose of this article is to analyze the relationship that may exist between dental caries etiology and genetics, and how some causes could be identified from the point of view of epigenetics.

1. Hunt HR, Goodman HO. The inheritance of resistance and susceptibility to dental caries. Int Dent J. 1962; (12): 306-21.
2. Horowitz SL. Clinical aspects of genetic research in dentistry. J Dent Res. 1963 Nov-Dec; 42(Suppl): 1330-43.
3. Niswander JD. Effects of heredity and environment on development of dentition. J Dent Res. 1963 Nov-Dec; 42(Suppl): 1288-96.
4. Niswander JD. Genetics of common dental disorders. Dent Clin North Am. 1975 Jan; 19(1): 197-206.
5. Mandel ID. Relation of saliva and plaque to caries. J Dent Res. 1974 Mar-Apr; 53(2): 246-66.
6. Mandel ID. Nature vs. nurture in dental caries. J Am Dent Assoc. 1994 Oct; 125(10): 1345-51.
7. Sofaer JA. Host genes and dental caries. Br Dent J. 1993 Dec 11-25; 175(11-12): 403-9.
8. Hassell TM, Harris EL. Genetic influences in caries and periodontal diseases. Crit Rev Oral Biol Med. 1995; 6(4): 319-42.
9. Townsend GC, Aldred MJ, Bartold PM. Genetic aspects of dental disorders. Aust Dent J. 1998 Aug; 43(4): 269-86.
10. Chung CS, Runck DW, Niswander JD, Bilben SE, Kau MCW. Genetic and epidemiologic studies of oral characteristics in Hawaii’s school children: I. J Dent Res. 1970 Nov-Dec; 49(6): 1374-85.
11. Horowitz SL, Osborne RH, DeGeorge FV. Caries experience in twins. Science. 1958 Aug 8; 128(3319): 300-1.
12. Werneck RI, Mira MT, Trevilatto PC. A critical review: an overview of genetic influence on dental caries. Oral Dis. 2010 Oct; 16(7): 613-23.
13. Seow WK, Humphreys C, Tudehope DI. Increased prevalence of developmental defects in low-birth-weight children: a controlled study. Pediatr Dent. 1987 Sep; 9(3): 221-5.
14. Wright, J. Defining the contribution of genetics in the etiology of dental caries. Chapel Hill, North Carolina, USA: Brauer Hall School of Dentistry. J Dent Res. 2010 Nov; 89(11): 1173-4.
15. Li Y, Navia JM, Caufield PW. Colonization by mutans streptococci in the mouth of 3 and 4 year old Chinese children with and without enamel hypoplasia. Arch Oral Biol. 1994 Dec; 39(12): 1057-62.
16. Lai PY, Seow WK, Rogers YI, Tudehope DI. Enamel hypoplasia and dental caries in very low birth weight. Curr Probl Pediatr Adolesc Health Care children: a longitudinal, case controlled study. Pediatr Dent. 1997; (19): 429.
17. Pascoe L, Seow WK. Dental caries and enamel hypoplasia in Australian aboriginal children. Pediatr Dent. 1994 May-Jun; 16(3): 193-9.
18. Wernek RI, Lázaro FP, Cobat AG, Xabier MB, Abel L, Alcaïs A et al. A major gene effect controls resistance to caries. J Dent Res. 2011 Jun; 90(6): 735-9.
19. Dawson DV. Genetic factors appear to contribute substantially to dental caries susceptibility, and may also independently mediate sucrose sweetness preference. J Evid Based Dent Pract. 2008 Mar; 8(1): 37-9.
20. Wallengren ML, Ericson D, Forsberg B, Johnson U. Human leukocyte antigens in relation to colonization by mutans streptococci in the oral cavity. Oral Microbiol Immunol. 1991 Oct; 6(5): 292-4.
21. Zengo AN, Mandel ID. Sucrose tasting and dental caries in man. Arch Oral Biol. 1972 Mar; 17(3): 605-7.
22. Leone CW, Oppenheim FG. Physical and chemical aspects of saliva as indicators of risk for dental caries in humans. J Dent Educ. 2001 Oct; 65(10): 1054-62.
23. Mandel I. The function of saliva. J Dent Res. 1987 Feb; 66(Special issue): 623-7.
24. Brown LR, Dreizen S, Handler S, Johnston DA. Effect of radiation induced xerostomia on human oral microflora. J Dent Res. 1975 Jul-Aug; 54(4): 740-50.
25. Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res. 2004 May-Jun; 38(3): 182-91.
26. Krasse B. The Vipeholm dental caries study: recollections and reflections 50 years later. J Dent Res. 2001 Sep; 80(9): 1785-8.
27. Greene LS, Desor JA, Maller O. Heredity and experience: their relative importance in the development of taste preference in man. J Comp Physiol Psychol. 1975 May; 89(3): 279-84.
28. Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics. 2005 Feb; 115(2): e216-22.
29. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec; 50(4): 353-80.
30. Burt BA. Prevention policies in the light of changed distribution of dental caries. Acta Odontol Scand. 1998 Jun; 56(3): 179-86.
31. Cevc G, Cevc P, Schara M, Skaleric U. The caries resistance of human teeth is determined by the spatial arrangement of hydroxyapatite microcrystals in the enamel. Nature. 1980 Jul 24; 286(5771): 425-6.
32. Gutiérrez P, Piña C, Lara V, Bosch P. Characterization of enamel with variable caries risk. Arch Oral Biol. 2005 Oct; 50(10): 843-8.
33. Witkop Jr CJ, Sauk Jr JJ. Heritable defects of enamel. In: Stewart RE, Prescott GH (editors). Oral facial genetics. St. Louis, Missouri: Mosby; 1976. pp. 151-226.
34. Backman B, Holm AK. Amelogenesis imperfecta: prevalence and incidence in northern Swedish county. Community Dent Oral Epidemiol. 1986 Feb; 14(1): 43-7.
35. Witkop CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol. 1988 Nov; 17(9-10): 547-53.
36. Slayton RL, Cooper ME, Marazita ML. Tuftelin, mutans streptococci, and dental caries susceptibility. J Dent Res. 2005 Aug; 84(8): 711-4.
37. Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM Jr, Schupack BI Brancher JA, Pecharki GD, Küchler EC, Tannure PN, Lips A, Vieira TC, Patir A, Yildirim M, Poletta FA, Mereb JC, Resick JM, Brandon CA, Orioli IM, Castilla EE, Marazita ML, Seymen F, Costa MC, Granjeiro JM, Trevilatto PC, Vieira AR. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS One. 2012 Sep; 7(9): e45022.
38. Deeley K, Letra A, Rose EK, Brandon CA, Resick JM, Marazita ML, Vieira AR. Possible association of amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res. 2008; 42(1): 8-13.
39. Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation J Dent Res. 2006 Sep; 85(9): 775-93.
40. Patir A, Seymen F, Yildirim M, Deeley K, Cooper ME, Marazita ML, et al. Enamel formation genes are associated with high caries experience in Turkish children. Caries Res. 2008; 42(5): 394-400.
41. Tannure PN, Küchler EC, Lips A, Costa Mde C, Luiz RR, Granjeiro JM, Vieira AR. Genetic variation in MMP20 contributes to higher caries experience. J Dent. 2012 May; 40(5): 381-6.
42. Wang X, Shaffer JR, Zeng Z, Begum F, Vieira AR, Noel J, Anjomshoaa I, Cuenco KT, Lee MK, Beck J, Boerwinkle E, Cornelis MC, Hu FB, Crosslin DR, Laurie CC, Nelson SC, Doheny KF, Pugh EW, Polk DE, Weyant RJ, Crout R, McNeil DW, Weeks DE, Feingold E, Marazita ML. Genome-wide association Scan of dental caries in the permanent dentition. BMC Oral Health. 2012 Dec 21; 12: 57.
43. Shimizu T, Deeley K, Briseño-Ruiz J, Faraco IM, Poletta FA, Brancher JA. Fine-mapping of 5q12.1–13.3 unveils new genetic contributors to caries. Caries Res. 2013 Jan 30; 47(4): 273-83.
44. Wendell S, Wang X, Brown M, Cooper ME, De Sensi RS, Weyant RJ. Taste genes associated with dental caries. J Dent Res. 2010 Nov; (89): 1198-202.
45. Zhao G, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zucker CS. The receptors for mammalian sweet and umami taste. Cell. 2003 Oct 31; 115(3): 255-66.
46. Mennella JA, Nicklaus S, Jagolino AL, Yourshaw LM. Variety is the spice of life: strategies for promoting fruit and vegetable acceptance during infancy. Physiol Behav. 2008 Apr 22; 94(1): 29-38.
47. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA. 2004 Sep 28; 101(39): 14258-63.
48. Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M. The cysteine-rich region of T1R3 determines responses to intensely sweet protein. J Biol Chem. 2004 Oct 22; 279(43): 45068-75.
49. Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem. 2005 Oct 7; 280(40): 34296-305.
50. Gadoth N, Mass E, Gordon CR, Steiner JE. Taste and smell in familial dysautonomia. Dev Med Child Neurol. 1997 Jun; 39(6): 393-7.
51. Smith A, Farbman A, Dancis J. Absence of taste-bud papillae in familial dysautonomia. Science. 1965 Feb 26; 147(3661): 1040-1.
52. Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009 Jan; 54(1): 15-39.
53. Ozawa Y, Chiba J, Sakamoto S. HLA class II alleles and salivary numbers of mutans streptococci and lactobacilli among young adults in Japan. Oral Microbiol Immunol. 2001 Dec; 16(6): 353-7.
54. Acton RT, Dasanayake AP, Harrison RA, Li Y, Roseman JM, Go RC, Wiener H, Caufield PW. Association of MHC genes with levels of caries-inducing organisms and caries severity in African American women. Hum Immunol. 1999 Oct; 60(10): 984-55.
55. Casanova J-L, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol. 2004 Jan; 4(1): 55-66.
56. Lehner T, Lamb JR, Welsh KL, Batchelor RJ. Association between HLA-DR antigens and helper cell activity in the control of dental caries. Nature. 1981 Aug 20; 292(5825): 770-2.
57. Tsuha Y, Hanada N, Asano T, Abei T, Yamaguchi S, Salam MA, Nakao R, Takeuchi H, Kurosaki N, Senpuku H. Role of peptide antigen for induction of inhibitory antibodies to Streptococcus mutans in human oral cavity. Clin Exp Immunol. 2004 Aug; 137(2): 393-401.
58. Burmester G-R, Pezzutto A, Ulrichs T, Aicher A. Color atlas of immunology. New York: Thieme; 2003.
59. Wallengren ML, Johnson U, Ericson D. HLA-DR4 and number of mutans streptococci in saliva among dental students and staff. Acta Odontol Scand. 1997 Oct; 55(5): 296-8.
60. Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008 Aug; 8(8): 631-43.
61. Chang ST, Linderman JJ, Kirschner DE. Effect of multiple genetic polymorphisms on antigen presentation and susceptibility to Mycobacterium tuberculosis infection. Infect Immun. 2008 Jul; 76(7): 3221-32.
62. Filoche S, Wong L, Sissons CH. Oral biofilms: emerging concepts in microbial ecology. J Dent Res. 2010 Jan; 89(1): 8-18.
63. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006 Jan 31; 174(3): 341-864.
64. Barros SP, Offenbacher S. Epigenetics: Connecting environment and genotype to phenotype and disease. J Dent Res. 2009 May; 88(5): 400-8.
65. Bierne H, Hamon M, Cossart P. Epigenetics and bacterial infections. Cold Spring Harb Perspect Med. 2012 Dec; (1): 2-12.
66. Jenner RG, Young RA. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol. 2005 Apr; 3(4): 281-94.
67. Yin L, Chung WO. Epigenetic regulation of human-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011 Jul; 4(4): 409-19.
68. Chung WO, Dale BA. Differential utilization of NFkB signaling pathways for gingival epithelial cell responses to oral commensal and pathogenic bacteria. Oral Microbiol Immunol. 2008 Apr; 23(2): 119-26.
69. Amerongen AV, Veerman EC. Saliva—the defender of the oral cavity. Oral Dis. 2002 Jan; 8(1): 12-22.
70. Jentsch H, Beetke E, Göcke R. Salivary analyses and caries increment over 4 years: an approach by cluster analysis. Clin Oral Investig. 2004 Sep; 8(3): 156-60.
71. Brancher JA, Pecharki GD, Doetzer AD, Medeiros KG, Cordeiro Júnior CA, Sotomaior VS, Bauer P, Trevilatto PC. Analysis of polymorphisms in the lactotransferrin gene promoter and dental caries. Int J Dent. 2011; 2011: 571726.
72. Daly M, Ross P, Giblin L, Buckley F. Polymorphisms within the Lactoferrin gene promoter in various cattle breeds. Anim Biotechnol. 2006; 17(1): 33-42.
73. Teng CT. Lactoferrin gene expression and regulation: an overview. Biochem Cell Biol. 2002; 80(1): 7-16.
74. Ward PP, Conneely OM. Lactoferrin: role in iron homeostasis and host defense against microbial infection. Biometals. 2004 Jun; 17(3): 203-8.
75. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998; 72: 141-96.
76. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003 Apr; 3(4): 253-66.
77. Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011 Jun 1; 90(3): 430-40.
78. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009 Sep 1; 15(17): 5473-7.
Cómo citar
Gutiérrez Prieto, S. J., García Robayo, D. A., Santacoloma Jiménez, S., & Mejía Barbosa, J. P. (2013). Caries dental: ¿influyen la genética y la epigenética en su etiología? Revisión de la literatura / Dental Caries: ¿Do Genetics and/or Epigenetics Influence its Etiology? Literature Review. Universitas Odontologica, 32(69), 83–92. Recuperado a partir de
Dossier Temático

Artículos más leídos del mismo autor/a

1 2 > >>