Publicado Sep 21, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Mercedes Viettri https://orcid.org/0000-0002-3290-2952

Fernando Rodríguez León https://orcid.org/0000-0003-1360-0577

José Luis Zambrano

Juan Ernesto Ludert https://orcid.org/0000-0003-4790-7681

##plugins.themes.bootstrap3.article.details##

Resumo

Las infecciones con el virus del dengue, transmitidas al humano por mosquitos del género Aedes sp., constituyen un problema de salud pública para las regiones tropicales y subtropicales del planeta. El ciclo de replicación del virus del dengue se lleva a cabo principalmente en el citoplasma de las células, en estrecha asociación con organelos membranosos como el retículo endoplasmático rugoso y el complejo de Golgi. En esta revisión se analiza la respuesta al estrés de estos organelos, ante la infección viral, tanto en células de vertebrados como de mosquitos, y se discuten las implicaciones de esta respuesta en la biología de estos agentes.

Keywords
References

1. Organización Mundial de la Salud. Dengue y dengue grave [internet]. 2022 ene 10 [citado 2022 mar]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue
2. Organización Panamericana de la Salud. Dengue: guías para la atención de enfermos en la región de las Américas [internet]. 2.ª ed. Washington; 2016. Disponible en: https://iris.paho.org/handle/10665.2/28232?locale-attribute=es
3. Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon I-K, et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 19to 20 PLoS Negl Trop Dis. 2010;4:e6.
4. Muller DA, Depelsenaire ACI, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017; 215:S89- S95. https://doi.org/10.1093/infdis/jiw649
5. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;26;379:327-3.
6. Deng S-Q, Yang X, Wei Y, Chen J-T, Wang X-J, Peng H-J. A review on dengue vaccine development. Vaccines (Basel). 2020;8(1):63. https://doi.org/10.3390/vaccines8010063
7. Halstead S. Recent advances in understanding dengue. F1000Res. 2019; 8:F10Faculty Rev-1279. https://doi.org/10.12688/f1000research.19197.1
8. Lindenbach B, Murray C, Thiel HJ and Rice C. Flaviviridae. En: Knipe DM, Howley PM, editores. Fields virology. 7.ª ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2007. p. 712-7.
9. Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: a minireview. Viruses. 2020;12:8.
10. Soo K-M, Khalid B, Ching S-M, Chee H-Y. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One. 2016;11:e0154760. https://doi.org/10.1371/journal.pone.0154760
11. Castillo-Macías A, Salinas-Carmona MC, Torres-López E. Immunology of viral infections with a high impact in Mexico: Dengue, Chikungunya, and Zika. Med Univ. 2018;19(77):198-207. https://doi.org/10.1016/j.rmu.2017.09.001
12. Heinz FX, Stiasny K. Proteolytic activation of flavivirus envelope proteins. En: Böttcher-Friebertshäuser E, Garten W, Klenk H, editores. Activation of viruses by host proteases. Springer; 2018.
13. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67:2773-86. https://doi.org/10.1007/s00018-010-0357-z
14. Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014; 9:134-42. https://doi.org/10.1016/j.coviro.2014.09.020
15. Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J. 2020;17(1):60. https://doi.org/10.1186/s12985-020-01329-7
16. Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NSprotein offer a multitude of options for inhibitor design. Antiviral Res. 2016;130:7-18. https://doi.org/10.1016/j.antiviral.2016.02.014
17. Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J. 2016;13:131. https://doi.org/10.1186/s12985-016-0590-7
18. Chatel-Chaix L, Bartenschlager R. Dengue virus-and hepatitis C virus-induced replication and assembly compartments: the enemy inside-caught in the web. J Virol. 2014;88 (11):5907-11. https://doi.org/10.1128/JVI.03404-13
19. Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res. 2016;134:244-9. https://doi.org/10.1016/j.antiviral.2016.09.010
20. Alcon-LePoder S, Drouet M-T, Roux P, Frenkiel M-P, Arborio M, Durand-Schneider A-M, et al. The secreted form of dengue virus nonstructural protein NSis endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity. J Virol. 2005;79(17):11403.
21. Sager G, Gabaglio S, Sztul E, Belov GA. Role of host cell secretory machinery in zika virus life cycle. Viruses. 2018;10(10):559. https://doi.org/10.3390/v10100559
22. Alcalá AC, Palomares LA, Ludert JE. Secretion of nonstructural protein of dengue virus from infected mosquito cells: facts and speculations. J Virol. 2018;92(14):e00275-18. https://doi.org/10.1128/JVI.00275-18
23. Rosales Ramirez R, Ludert JE. The Dengue Virus Nonstructural Protein (NS1) is secreted from mosquito cells in association with the intracellular cholesterol transporter chaperone caveolin complex. J Virol. 2019;93(4):e01985-18. https://doi.org/10.1128/JVI.01985-18
24. Blázquez A-B, Escribano-Romero E, Merino-Ramos T, Saiz J-C, Martín-Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol. 2014;5:266. https://doi.org/10.3389/fmicb.2014.00266
25. Valadao AL, Aguiar RS, de Arruda LB. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Front Microbiol. 2016; 7:1233. https://doi.org/10.3389/fmicb.2016.01233
26. Tan Z, Zhang W, Sun J, Fu Z, Ke X, Zheng C, et al. ZIKV infection activates the IRE1-XBPand ATF pathways of unfolded protein response in neural cells. J Neuroinflammation. 2018;15(1):275. https://doi.org/10.1186/s12974-018-1311-5
27. Lewy TG, Grabowski JM, Bloom ME. BiP: Master Regulator of the Unfolded Protein Response and Crucial Factor in Flavivirus Biology. Yale J Biol Med. 2017;90(2):291-3.
28. Perera N, Miller JL, Zitzmann N. The role of the unfolded protein response in dengue virus pathogenesis. Cell Microbiol. 2017;19(5). https://doi.org/10.1111/cmi.12734.
29. Peña J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem. 2011;286:14226-36. https://doi.org/10.1074/jbc.M111.222703
30. Yu C-Y, Hsu Y-W, Liao C-L, Lin Y-L. Flavivirus infection activates the XBPpathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol. 2006;80:11868-80. https://doi.org/10.1128/JVI.00879-06
31. Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F. Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J. 2007;4:91. https://doi.org/10.1186/1743-422X-4-91
32. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992;119:301-11. https://doi.org/10.1083/jcb.119.2.301
33. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. 1993;333(1-2):169-74. https://doi.org/10.1016/0014-5793(93)80398-e
34. Lee Y-R, Lei H-Y, Liu M-T, Wang J-R, Chen S-H, Jiang-Shieh Y-F, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology. 2008;374:240-8. https://doi.org/10.1016/j.virol.2008.02.016
35. Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016;7:e2127. https://doi.org/10.1038/cddis.2015.409
36. Chia PZ, Gleeson PA. The regulation of endosome-to-Golgi retrograde transport by tethers and scaffolds. Traffic. 2011;12:939-47. https://doi.org/10.1111/j.1600-0854.2011.01185.x
37. Abdel Rahman AM, Ryczko M, Nakano M, Pawling J, Rodrigues T, Johswich A, et al. Golgi N-glycan branching N acetylglucosaminyltransferases I, V and VI promote nutrient uptake and metabolism. Glycobiology. 2015;25:225-
38. Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. BioFactors. 2021;47:964-40. https://doi.org/10.1093/glycob/cwu105
39. Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life. 2009;61:871-9. https://doi.org/10.1002/iub.229
40. Sasaki K, Yoshida H. Organelle autoregulation--stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem. 2015;157:185-95. https://doi.org/10.1093/jb/mvv010
41. Sasaki K, Yoshida H. Golgi stress response and organelle zones. FEBS Lett. 2019;593:2330-40. https://doi.org/10.1002/1873-3468.13554
42. Taniguchi M, Yoshida H. TFE3, HSP47, and CREBPathways of the Mammalian Golgi Stress Response. Cell Struct Funct. 2017;42:27-36. https://doi.org/10.1247/csf.16023
43. Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, et al. TFEis a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct. 2015;40:13-30. https://doi.org/10.1247/csf.14015
44. Oku M, Tanakura S, Uemura A, Sohda M, Misumi Y, Taniguchi M, et al. Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct Funct. 2011;36:1-12. https://doi.org/10.1247/csf.10014
45. Viettri M, Zambrano JL, Rosales R, Caraballo GI, Gutiérrez-Escolano AL, Ludert JE. Flavivirus infections induce a Golgi stress response in vertebrate and mosquito cells. Sci Rep. 2021;11:23489. https://doi.org/10.1038/s41598-021-02929-1
46. Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K. Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein. Biochem Biophys Res Commun. 2007;362:1051-6. https://doi.org/10.1016/j.bbrc.2007.08.137
47. Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5:796-812. https://doi.org/10.1038/s41564-020-0714-0
48. Wu S-Y, Chen Y-L, Lee Y-R, Lin C-F, Lan S-H, Lan K-Y, et al. The autophagosomes containing dengue virus proteins and full-length genomic RNA are infectious. Viruses. 2021;13(10):2034. https://doi.org/10.3390/v13102034
49. Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M, et al. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol. 2013;87:1312-21. https://doi.org/10.1128/JVI.02177-12
50. Chen T-Y, Smartt CT. Activation of the autophagy pathway decreases dengue virus infection in Aedes aegypti cells. Parasit Vectors. 2021;14(1):551. https://doi.org/10.1186/s13071-021-05066-w
Como Citar
Viettri, M., Rodríguez León , F., Zambrano, J. L., & Ludert, J. E. (2022). La replicación del virus del dengue induce respuestas de estrés en el retículo endoplasmático rugoso y en el aparato de Golgi, tanto en células de vertebrados como de invertebrados (mosquitos. Universitas Medica, 63(3). https://doi.org/10.11144/Javeriana.umed63-3.deng
Seção
Artículos de revisión

Artigos mais lidos pelo mesmo(s) autor(es)