Publicado sep 21, 2022



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Mercedes Viettri https://orcid.org/0000-0002-3290-2952

Fernando Rodríguez León https://orcid.org/0000-0003-1360-0577

José Luis Zambrano

Juan Ernesto Ludert https://orcid.org/0000-0003-4790-7681

##plugins.themes.bootstrap3.article.details##

Resumen

Las infecciones con el virus del dengue, transmitidas al humano por mosquitos del género Aedes sp., constituyen un problema de salud pública para las regiones tropicales y subtropicales del planeta. El ciclo de replicación del virus del dengue se lleva a cabo principalmente en el citoplasma de las células, en estrecha asociación con organelos membranosos como el retículo endoplasmático rugoso y el complejo de Golgi. En esta revisión se analiza la respuesta al estrés de estos organelos, ante la infección viral, tanto en células de vertebrados como de mosquitos, y se discuten las implicaciones de esta respuesta en la biología de estos agentes.

Keywords

virus del dengue, virus del Zika, retículo endoplasmático rugoso, aparato de Golgi, respuestas de estrés del aparato de Golgi

References

1. Organización Mundial de la Salud. Dengue y dengue grave [internet]. 2022 ene 10 [citado 2022 mar]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue
2. Organización Panamericana de la Salud. Dengue: guías para la atención de enfermos en la región de las Américas [internet]. 2.ª ed. Washington; 2016. Disponible en: https://iris.paho.org/handle/10665.2/28232?locale-attribute=es
3. Fried JR, Gibbons RV, Kalayanarooj S, Thomas SJ, Srikiatkhachorn A, Yoon I-K, et al. Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 19to 20 PLoS Negl Trop Dis. 2010;4:e6.
4. Muller DA, Depelsenaire ACI, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017; 215:S89- S95. https://doi.org/10.1093/infdis/jiw649
5. Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;26;379:327-3.
6. Deng S-Q, Yang X, Wei Y, Chen J-T, Wang X-J, Peng H-J. A review on dengue vaccine development. Vaccines (Basel). 2020;8(1):63. https://doi.org/10.3390/vaccines8010063
7. Halstead S. Recent advances in understanding dengue. F1000Res. 2019; 8:F10Faculty Rev-1279. https://doi.org/10.12688/f1000research.19197.1
8. Lindenbach B, Murray C, Thiel HJ and Rice C. Flaviviridae. En: Knipe DM, Howley PM, editores. Fields virology. 7.ª ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2007. p. 712-7.
9. Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: a minireview. Viruses. 2020;12:8.
10. Soo K-M, Khalid B, Ching S-M, Chee H-Y. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PLoS One. 2016;11:e0154760. https://doi.org/10.1371/journal.pone.0154760
11. Castillo-Macías A, Salinas-Carmona MC, Torres-López E. Immunology of viral infections with a high impact in Mexico: Dengue, Chikungunya, and Zika. Med Univ. 2018;19(77):198-207. https://doi.org/10.1016/j.rmu.2017.09.001
12. Heinz FX, Stiasny K. Proteolytic activation of flavivirus envelope proteins. En: Böttcher-Friebertshäuser E, Garten W, Klenk H, editores. Activation of viruses by host proteases. Springer; 2018.
13. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67:2773-86. https://doi.org/10.1007/s00018-010-0357-z
14. Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014; 9:134-42. https://doi.org/10.1016/j.coviro.2014.09.020
15. Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J. 2020;17(1):60. https://doi.org/10.1186/s12985-020-01329-7
16. Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NSprotein offer a multitude of options for inhibitor design. Antiviral Res. 2016;130:7-18. https://doi.org/10.1016/j.antiviral.2016.02.014
17. Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J. 2016;13:131. https://doi.org/10.1186/s12985-016-0590-7
18. Chatel-Chaix L, Bartenschlager R. Dengue virus-and hepatitis C virus-induced replication and assembly compartments: the enemy inside-caught in the web. J Virol. 2014;88 (11):5907-11. https://doi.org/10.1128/JVI.03404-13
19. Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res. 2016;134:244-9. https://doi.org/10.1016/j.antiviral.2016.09.010
20. Alcon-LePoder S, Drouet M-T, Roux P, Frenkiel M-P, Arborio M, Durand-Schneider A-M, et al. The secreted form of dengue virus nonstructural protein NSis endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity. J Virol. 2005;79(17):11403.
21. Sager G, Gabaglio S, Sztul E, Belov GA. Role of host cell secretory machinery in zika virus life cycle. Viruses. 2018;10(10):559. https://doi.org/10.3390/v10100559
22. Alcalá AC, Palomares LA, Ludert JE. Secretion of nonstructural protein of dengue virus from infected mosquito cells: facts and speculations. J Virol. 2018;92(14):e00275-18. https://doi.org/10.1128/JVI.00275-18
23. Rosales Ramirez R, Ludert JE. The Dengue Virus Nonstructural Protein (NS1) is secreted from mosquito cells in association with the intracellular cholesterol transporter chaperone caveolin complex. J Virol. 2019;93(4):e01985-18. https://doi.org/10.1128/JVI.01985-18
24. Blázquez A-B, Escribano-Romero E, Merino-Ramos T, Saiz J-C, Martín-Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol. 2014;5:266. https://doi.org/10.3389/fmicb.2014.00266
25. Valadao AL, Aguiar RS, de Arruda LB. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Front Microbiol. 2016; 7:1233. https://doi.org/10.3389/fmicb.2016.01233
26. Tan Z, Zhang W, Sun J, Fu Z, Ke X, Zheng C, et al. ZIKV infection activates the IRE1-XBPand ATF pathways of unfolded protein response in neural cells. J Neuroinflammation. 2018;15(1):275. https://doi.org/10.1186/s12974-018-1311-5
27. Lewy TG, Grabowski JM, Bloom ME. BiP: Master Regulator of the Unfolded Protein Response and Crucial Factor in Flavivirus Biology. Yale J Biol Med. 2017;90(2):291-3.
28. Perera N, Miller JL, Zitzmann N. The role of the unfolded protein response in dengue virus pathogenesis. Cell Microbiol. 2017;19(5). https://doi.org/10.1111/cmi.12734.
29. Peña J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem. 2011;286:14226-36. https://doi.org/10.1074/jbc.M111.222703
30. Yu C-Y, Hsu Y-W, Liao C-L, Lin Y-L. Flavivirus infection activates the XBPpathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol. 2006;80:11868-80. https://doi.org/10.1128/JVI.00879-06
31. Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F. Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J. 2007;4:91. https://doi.org/10.1186/1743-422X-4-91
32. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992;119:301-11. https://doi.org/10.1083/jcb.119.2.301
33. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. 1993;333(1-2):169-74. https://doi.org/10.1016/0014-5793(93)80398-e
34. Lee Y-R, Lei H-Y, Liu M-T, Wang J-R, Chen S-H, Jiang-Shieh Y-F, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology. 2008;374:240-8. https://doi.org/10.1016/j.virol.2008.02.016
35. Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016;7:e2127. https://doi.org/10.1038/cddis.2015.409
36. Chia PZ, Gleeson PA. The regulation of endosome-to-Golgi retrograde transport by tethers and scaffolds. Traffic. 2011;12:939-47. https://doi.org/10.1111/j.1600-0854.2011.01185.x
37. Abdel Rahman AM, Ryczko M, Nakano M, Pawling J, Rodrigues T, Johswich A, et al. Golgi N-glycan branching N acetylglucosaminyltransferases I, V and VI promote nutrient uptake and metabolism. Glycobiology. 2015;25:225-
38. Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. BioFactors. 2021;47:964-40. https://doi.org/10.1093/glycob/cwu105
39. Yoshida H. ER stress response, peroxisome proliferation, mitochondrial unfolded protein response and Golgi stress response. IUBMB Life. 2009;61:871-9. https://doi.org/10.1002/iub.229
40. Sasaki K, Yoshida H. Organelle autoregulation--stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem. 2015;157:185-95. https://doi.org/10.1093/jb/mvv010
41. Sasaki K, Yoshida H. Golgi stress response and organelle zones. FEBS Lett. 2019;593:2330-40. https://doi.org/10.1002/1873-3468.13554
42. Taniguchi M, Yoshida H. TFE3, HSP47, and CREBPathways of the Mammalian Golgi Stress Response. Cell Struct Funct. 2017;42:27-36. https://doi.org/10.1247/csf.16023
43. Taniguchi M, Nadanaka S, Tanakura S, Sawaguchi S, Midori S, Kawai Y, et al. TFEis a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct. 2015;40:13-30. https://doi.org/10.1247/csf.14015
44. Oku M, Tanakura S, Uemura A, Sohda M, Misumi Y, Taniguchi M, et al. Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct Funct. 2011;36:1-12. https://doi.org/10.1247/csf.10014
45. Viettri M, Zambrano JL, Rosales R, Caraballo GI, Gutiérrez-Escolano AL, Ludert JE. Flavivirus infections induce a Golgi stress response in vertebrate and mosquito cells. Sci Rep. 2021;11:23489. https://doi.org/10.1038/s41598-021-02929-1
46. Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K. Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein. Biochem Biophys Res Commun. 2007;362:1051-6. https://doi.org/10.1016/j.bbrc.2007.08.137
47. Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5:796-812. https://doi.org/10.1038/s41564-020-0714-0
48. Wu S-Y, Chen Y-L, Lee Y-R, Lin C-F, Lan S-H, Lan K-Y, et al. The autophagosomes containing dengue virus proteins and full-length genomic RNA are infectious. Viruses. 2021;13(10):2034. https://doi.org/10.3390/v13102034
49. Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M, et al. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol. 2013;87:1312-21. https://doi.org/10.1128/JVI.02177-12
50. Chen T-Y, Smartt CT. Activation of the autophagy pathway decreases dengue virus infection in Aedes aegypti cells. Parasit Vectors. 2021;14(1):551. https://doi.org/10.1186/s13071-021-05066-w
Cómo citar
Viettri, M., Rodríguez León , F., Zambrano, J. L., & Ludert, J. E. (2022). La replicación del virus del dengue induce respuestas de estrés en el retículo endoplasmático rugoso y en el aparato de Golgi, tanto en células de vertebrados como de invertebrados (mosquitos. Universitas Medica, 63(3). https://doi.org/10.11144/Javeriana.umed63-3.deng
Sección
Artículos de revisión

Artículos más leídos del mismo autor/a