Publicado ene 17, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Ana María Zarante Bahamón https://orcid.org/0000-0002-2244-0838

Sandra Navarro Marroquin https://orcid.org/0000-0002-1919-8972

Fernando Suárez-Obando https://orcid.org/0000-0001-6336-5347

Jorge Ramón Gomez https://orcid.org/0000-0002-2697-2380

##plugins.themes.bootstrap3.article.details##

Resumen

La hiperamonemia se define como aumento de los niveles de amonio a nivel plasmático de forma aguda o crónica. La hiperamonemia se presenta de manera frecuente en diversos tipos de errores innatos del metabolismo, enfermedades que deben ser diagnosticadas y manejadas de manera inmediata y adecuada, debido a que el retraso en su manejo genera secuelas neurológicas graves y permanentes, así como desenlaces fatales. El objetivo de estas recomendaciones es aportar herramientas al clínico para la sospecha, abordaje diagnóstico y manejo del recién nacido con hiperamonemia primaria, teniendo en cuenta la correlación entre fisiopatología, etiología, aproximación clínica y de laboratorio, así como recomendaciones de manejo farmacológico y no farmacológico.

Keywords

hiperamonemia, coma, encefalopatia, error innato del metabolismo, recien nacido

References
1. Ali R, Nagalli S. Hyperammonemia. StatPearls. Treasure Island (FL); 2021.
2. Summar ML, Mew NA. Inborn errors of metabolism with hyperammonemia: urea cycle defects and related disorders. Pediatr Clin North Am. 2018;65(2):231-46.
3. Woo PYM, Woo AWY, Lam SW, Ko NMW, Ho JWK, Chu ACH, et al. Incidence, presentation, and risk factors for sodium valproate-associated hyperammonemia in neurosurgical patients: a prospective, observational Study. World Neurosurg. 2020;144:e597-e604.
4. Kaneko M, Ogasawara K, Go H, Imamura T, Momoi N, Hosoya M. Continuous hemodialysis therapy for an extremely low-birthweight infant with hyperammonemia. Pediatr Int. 2013;55(5):656-8.
5. Zhu X, Li X, Zhang T, Zhao L. Risk factors for valproic acid-induced hyperammonaemia in chinese paediatric patients with epilepsy. Basic Clin Pharmacol Toxicol. 2018;123(5):628-34.
6. Wu G, Jaeger LA, Bazer FW, Rhoads JM. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004;15(8):442-51.
7. Abily-Donval L, Dupic L, Joffre C, Brassier A, Arnoux JB, Grimaud M, et al. Management of 35 critically ill hyperammonemic neonates: role of early administration of metabolite scavengers and continuous hemodialysis. Arch Pediatr. 2020;27(5):250-6.
8. Pérez M, Ibarra-González I, Fernández-Laínez C, Ruiz-García M, Vela-Amieva M. Hiperamonemia en la edad pediátrica: estudio de 72 casos. Arch Pediatr Mex. 2013;34:268-74.
9. Grupo de Consenso de Lisboa 2006 y Madrid 2007. Protocolo hispano-luso de diagnóstico y tratamiento de las hiperamonemias en pacientes neonatos y de más de 30 días de vida. Madrid: Ergon; 2009.
10. Stojanovic VD, Doronjski AR, Barisic N, Kovacevic BB, Pavlovic VS. A case of transient hyperammonemia in the newborn transient neonatal hyperammonemia. J Matern Fetal Neonatal Med. 2010;23(4):347-50.
11. Couce M, Bustos G, García-Alix A, Lazaro A, Martínez-Pardo M, Molina A, et al. Guía clínica de diagnóstico y tratamiento urgente de hiperamonemia neonatal. An Pediatr. 2009;70(2):183-8.
12. Ozanne B, Nelson J, Cousineau J, Lambert M, Phan V, Mitchell G, et al. Threshold for toxicity from hyperammonemia in critically ill children. J Hepatol. 2012;56(1):123-8.
13. Savy N, Brossier D, Brunel-Guitton C, Ducharme-Crevier L, Du Pont-Thibodeau G, Jouvet P. Acute pediatric hyperammonemia: current diagnosis and management strategies. Hepat Med. 2018;10:105-15.
14. Devictor D, Tissieres P, Durand P, Chevret L, Debray D. Acute liver failure in neonates, infants and children. Expert Rev Gastroenterol Hepatol. 2011;5(6):717-29.
15. Leung-Pineda V. Inherited disorders of the urea cycle 2019 [internet]. Disponible en: https://www.aacc.org/science-and-research/clinical-chemistry-trainee-council/trainee-council-in-english/pearls-of-laboratory-medicine/2019/inherited-disorders-of-the-urea-cycle.
16. Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1-2):179-80.
17. Najafi R, Hashemipour M, Mostofizadeh N, Ghazavi M, Nasiri J, Shahsanai A, et al. Demographic and clinical findings in pediatric patients affected by organic acidemia. Iran J Child Neurol. 2016;10(2):74-81.
18. Golbahar J, Al-Jishi EA, Altayab DD, Carreon E, Bakhiet M, Alkhayyat H. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the Kingdom of Bahrain. Mol Genet Metab. 2013;110(1-2):98-101.
19. Rocha H, Castineiras D, Delgado C, Egea J, Yahyaoui R, Gonzalez Y, et al. Birth prevalence of fatty acid beta-oxidation disorders in Iberia. JIMD Rep. 2014;16:89-94.
20. Vockley J. Long-chain fatty acid oxidation disorders and current management strategies. Am J Manag Care. 2020;26(7 Suppl):S147-S54.
21. Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. Transl Oncogenomics. 2008;3:99-136.
22. Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain amino acids: catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Front Physiol. 2021;12:702826.
23. Gurina TS, Mohiuddin SS. Biochemistry, protein catabolism. Treasure Island (FL): StatPearls; 2021.
24. Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81(2-3):101-7.
25. Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol. 2015;10(8):1444-58.
26. Limon ID, Angulo-Cruz I, Sánchez-Abdón L, Patricio-Martínez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front Neurosci. 2021;15:578922.
27. Albrecht J, Dolinska M. Glutamine as a pathogenic factor in hepatic encephalopathy. J Neurosci Res. 2001;65(1):1-5.
28. Llansola M, Rodrigo R, Monfort P, Montoliu C, Kosenko E, Cauli O, et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab Brain Dis. 2007;22(3-4):321-35.
29. Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601-10.
30. Llansola M, Montoliu C, Cauli O, Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A, et al. Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations. Metab Brain Dis. 2013;28(2):151-4.
31. Gubbels CS, VanNoy GE, Madden JA, Copenheaver D, Yang S, Wojcik MH, et al. Prospective, phenotype-driven selection of critically ill neonates for rapid exome sequencing is associated with high diagnostic yield. Genet Med. 2020;22(4):736-44.
32. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. Use of Exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 2017;171(12):e173438.
33. Haberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis. 2019;42(6):1192-230.
34. Raina R, Bedoyan JK, Lichter-Konecki U, Jouvet P, Picca S, Mew NA, et al. Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy. Nat Rev Nephrol. 2020;16(8):471-82.
35. Pontoizeau C, Roda C, Arnoux JB, Vignolo-Diard P, Brassier A, Habarou F, et al. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders. Mol Genet Metab. 2020;130(2):110-7.
36. Wiwattanadittakul N, Prust M, Gaillard WD, Massaro A, Vezina G, Tsuchida TN, et al. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol Genet Metab. 2018;125(3):235-40.
37. Misel ML, Gish RG, Patton H, Mendler M. Sodium benzoate for treatment of hepatic encephalopathy. Gastroenterol Hepatol (N Y). 2013;9(4):219-27.
38. De Las Heras J, Aldamiz-Echevarría L, Martínez-Chantar ML, Delgado TC. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease. Expert Opin Drug Metab Toxicol. 2017;13(4):439-48.
39. Burrage LC, Jain M, Gandolfo L, Lee BH, Members of the Urea Cycle Disorders C, Nagamani SC. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders. Mol Genet Metab. 2014;113(1-2):131-5.
40. Schrettl V, Felgenhauer N, Rabe C, Fernando M, Eyer F. L-Arginine in the treatment of valproate overdose - five clinical cases. Clin Toxicol (Phila). 2017;55(4):260-6.
41. Nakanishi H, Hayakawa Y, Kubota Y, Kurosaki M, Osawa L, Inada K, et al. Impaired brain function improved by L-carnitine in patients with cirrhosis: evaluation using near-infrared spectroscopy. Sci Rep. 2020;10(1):13566.
42. Robinson JR, Conroy PC, Hardison D, Hamid R, Grubb PH, Pietsch JB, et al. Rapid resolution of hyperammonemia in neonates using extracorporeal membrane oxygenation as a platform to drive hemodialysis. J Perinatol. 2018;38(6):665-71.
43. Ikeri K, Cardona VQ, Hagan-Brown A, Young M, Schneider M, Menkiti O. ECMO as a platform for rapid ammonia removal in a neonate with multienzyme urea cycle disorder. J Extra Corpor Technol. 2020;52(1):58-62.
44. Wijdicks EF. Hepatic Encephalopathy. N Engl J Med. 2016;375(17):1660-70.
45. Unsinn C, Das A, Valayannopoulos V, Thimm E, Beblo S, Burlina A, et al. Clinical course of 63 patients with neonatal onset urea cycle disorders in the years 2001-2013. Orphanet J Rare Dis. 2016;11(1):116.
46. Hediger N, Landolt MA, Díez-Fernández C, Huemer M, Haberle J. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J Inherit Metab Dis. 2018;41(4):689-98.
47. Picca S, Dionisi-Vici C, Bartuli A, De Palo T, Papadia F, Montini G, et al. Short-term survival of hyperammonemic neonates treated with dialysis. Pediatr Nephrol. 2015;30(5):839-47.
48. Celik M, Akdeniz O, Ozgun N. Efficacy of peritoneal dialysis in neonates presenting with hyperammonaemia due to urea cycle defects and organic acidaemia. Nephrology (Carlton). 2019;24(3):330-5.
49. Karam PE, Habbal MZ, Mikati MA, Zaatari GE, Cortas NK, Daher RT. Diagnostic challenges of aminoacidopathies and organic acidemias in a developing country: a twelve-year experience. Clin Biochem. 2013;46(18):1787-92.
50. Porta F, Peruzzi L, Bonaudo R, Pieretti S, Busso M, Cocchi E, et al. Differential response to renal replacement therapy in neonatal-onset inborn errors of metabolism. Nephrology (Carlton). 2018;23(10):957-61.
51. Balzano T, Dadsetan S, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Malaguarnera M, et al. Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: Reversed by anti-TNF-alpha treatment. J Hepatol. 2020;73(3):582-92.
52. Monfort P, Cauli O, Montoliu C, Rodrigo R, Llansola M, Piedrafita B, et al. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: therapeutical implications. Neurochem Int. 2009;55(1-3):106-12.
53. Montoliu C, Rodrigo R, Monfort P, Llansola M, Cauli O, Boix J, et al. Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications. Metab Brain Dis. 2010;25(1):39-48.
54. Gil Campos M, Blasco-Alonso J, Sierra Corcoles C, Cuevas Cervera JL, Arrabal Fernández L, Aldamiz Echevarria L, et al. [Spanish multicenter study: hyperammonemia not associated with inborn errors of metabolism in children]. Nutr Hosp. 2017;34(4):814-9.
55. García-García R, Cruz-Gómez AJ, Urios A, Mangas-Losada A, Forn C, Escudero-García D, et al. Learning and memory impairments in patients with minimal hepatic encephalopathy are associated with structural and functional connectivity alterations in hippocampus. Sci Rep. 2018;8(1):9664.
56. Haberle J. Clinical practice: the management of hyperammonemia. Eur J Pediatr. 2011;170(1):21-34.
57. Singh RH. Nutritional management of patients with urea cycle disorders. J Inherit Metab Dis. 2007;30(6):880-7.
58. Berry GT, Steiner RD. Long-term management of patients with urea cycle disorders. J Pediatr. 2001;138(1 Suppl):S56-60; discussion S-1.
59. Galal NM, Fouad HM, Saied A, Dabnon M. Hyperammonemia in the pediatric emergency care setting. Pediatr Emerg Care. 2010;26(12):888-91.
Cómo citar
Zarante Bahamón, A. M., Navarro Marroquin, S., Suarez-Obando, F., & Ramón Gómez, J. L. (2023). El Recomendaciones de manejo de la hiperamonemia en neonatos . Universitas Medica, 63(4). https://doi.org/10.11144/Javeriana.umed63-4.rmhn
Sección
Artículos de revisión