Analysis of a Latent Class Model in Diagnostic Classification Scales Acute Coronary Syndrome
PDF (Spanish)

Keywords

Chest pain
acute coronary syndromes
classification/diagnosis
latent class analysis

How to Cite

Analysis of a Latent Class Model in Diagnostic Classification Scales Acute Coronary Syndrome. (2013). Universitas Medica, 55(2), 138-151. https://doi.org/10.11144/Javeriana.umed55-2.amcl
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar

Abstract

Introduction: Chest pain is one of the leading causes of visits to the emergency department, identifying situations that endanger life, especially acute coronary syndromes (ACS), becomes the priority. The Braunwald and TIMI scales are two of the approximations used in the initial classification of patients.

Methodology: From a database obtained from a study of the application of critical paths in the diagnosis of ACS, consisting of patients with chest pain, we conducted an exploratory study in which, from a latent class analysis is evaluated the components of these scales. 

Results: It is founded that the best model is the one that comprises two latent classes for the case of Braunwald and three for the TIMI. Suggests that could reduce the dimensionality of the scale variables Braunwald excluding investment pulmonary edema and isolated T-wave in a shunt. The TIMI scale does not fit enough to make the diagnostic classification of SCA.

Conclusion: Latent class analysis could be used to classify groups for chest pain classification in ACS or reduce the dimensionality.

PDF (Spanish)

Erhardt L, Herlitz J, Bossaert L, et al. European Society of Cardiology: Task force on the management of chest pain. Eur Heart J. 2002;23(15):1153-76.

Blomkalns AL, Gibler WB. Chest pain unit concept: rationale and diagnostic strategies. Cardiol Clin. 2005;23(4):411-21.

Braunwald E, Jones RH, Mark DB, et al. Diagnosing and managing unstable angina. Agency for Health Care Policy and Research. Circulation. 1994;90(1): 613-22.

Mendoza F, Isaza D, Beltrán R, Jaramillo C. Guías colombianas de cardiología: síndrome coronario agudo sin elevación del ST. Rev Col Cardiol. 2008;15(Supl 3):143-232.

Mendoza F, Isaza D, Beltrán R, Jaramillo C. Guías colombianas de cardiología-síndrome coronario agudo con elevación del ST. Rev Col Cardiol. 2010;17(Supl 3):121-275.

Jneid H, Anderson JL, Wright RS, et al. 2012 ACCF/AHA Focused Update of the Guideline for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction (Updating the 2007 Guideline and Replacing the 2011 Focused Update) A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2012;126(7):875-910.

O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):529-55.

Hamm CW, Bassand JP, Agewall S, et al. The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2999-3054.

Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569-619.

Antman E, Cohen M, Bernick PJ, et al. The TIMI risk score for unstable angina/non- ST elevation MI, a method for prognostication and therapeutic decision making. JAMA. 2000;284(7):835-42.

Bartholomew BA, Sheps DS, Monroe S, et al. A population-based evaluation of the thrombolysis in myocardial infarction risk score for unstable angina and non-ST elevation myocardial infarction. Clin Cardiol. 2004;27:74-8.

Pollack CV Jr, Sites FD, Shofer FS, Sease KL, Hollander JE. Application of the TIMI risk score for unstable angina and non-ST elevation acute coronary syndrome to an unselected emergency department chest pain population. Acad Emerg Med. 2006;13:13-8.

Hess EP, Agarwal D, Chandra S, et al. Diagnostic accuracy of the TIMI risk score in patients with chest pain in theemergency department: a meta-analysis. CMAJ. 2010;182(10):1039-44.

Goodacre SW, Bradburn M, Mohamed A, Gray A. Evaluation of global registry of acute cardiac events and thrombolysis in myocardial infarction scores in patients with suspected acute coronary syndrome. Am J Emerg Med. 2012;30:37-44.

Macdonald SP, Nagree Y, Fatovich DM, Flavell HL, Loutsky F. Comparison of two clinical scoring systems for emergency department risk stratification of suspected acute coronary syndrome. Emerg Med Australas. 2011;23(6):717-25.

Lyon R, Morris AC, Caesar D, Gray S, Gray A. Chest pain presenting to the Emergency Department--to stratify risk with GRACE or TIMI? Resuscitation. 2007;74(1):90-3.

Lee B, Chang AM, Matsuura AC, Marcoon S, Hollander JE. Comparison of cardiac risk scores in ED patients with potential acute coronary syndrome. Crit Pathw Cardiol. 2011;10(2):64-8.

Reyna C, Brussino S. Revisión de los fundamentos del análisis de clases latentes y ejemplo de aplicación en el área de las adicciones. Trastornos Adictivos. 2011;13(1):11-9.

Monroy L, Vidal R, Saade A. Análisis de clases latentes: una técnica para detectar heterogeneidad en poblaciones [cuaderno técnico 2.]. México: Centro Nacional de Evaluación para la Educación Superior; 2009.

Linzer DA, Lewis J. poLCA: An R package for polytomous variable latent class analysis. J Stat Softw. 2011;42(10):1-29.

Amsterdam EA, Kirk JD, Bluemke DA, et al. Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American Heart Association. Circulation. 2010;122:1756-76.

Poza C. Técnicas estadísticas multivariantes para la generación de variables latentes. Revista de la EAN. 2008;64:89-100.

Haughton D, Legrand P, Woolford S. Review of three latent class cluster analysis packages: Latent Gold, poLCA, and MCLUST. Am Stat. 2009;63(1):81-91.

R Development Core Team. R: a language and environment for statistical computing [internet]. Vienna, Austria: R Foundation for Statistical Computing; 2011 [citado 2012 nov]. Disponible en: http://www.R-project.org.

Linzer DA, Lewis J. poLCA: polytomous variable latent class analysis [internet]. R package version 1.3.1; 2011 [citado 2012 nov]. Disponible en: http://userwww.service.emory.edu/~dlinzer/poLCA.

This journal is registered under a Creative Commons Attribution 4.0 International Public License. Thus, this work may be reproduced, distributed, and publicly shared in digital format, as long as the names of the authors and Pontificia Universidad Javeriana are acknowledged. Others are allowed to quote, adapt, transform, auto-archive, republish, and create based on this material, for any purpose (even commercial ones), provided the authorship is duly acknowledged, a link to the original work is provided, and it is specified if changes have been made. Pontificia Universidad Javeriana does not hold the rights of published works and the authors are solely responsible for the contents of their works; they keep the moral, intellectual, privacy, and publicity rights.

Approving the intervention of the work (review, copy-editing, translation, layout) and the following outreach, are granted through an use license and not through an assignment of rights. This means the journal and Pontificia Universidad Javeriana cannot be held responsible for any ethical malpractice by the authors. As a consequence of the protection granted by the use license, the journal is not required to publish recantations or modify information already published, unless the errata stems from the editorial management process. Publishing contents in this journal does not generate royalties for contributors.