Abstract
Objective: To evaluate the application of the Surveillance algorithm for Zika of the National Institute of Health of Colombia, in newborns and pregnant women from October 2015 to June 2017 in Bogotá and Cali, Colombia. Methods: Descriptive study. The data were obtained from files of the National Public Health Surveillance System and the Surveillance and Follow-up Programs for children with Congenital Defects of Bogotá and Cali. Frequency of sex, affiliation to the health system and frequency of congenital defects were calculated. Compliance with the studies proposed by the algorithm and its presumptive diagnosis were analyzed. Results: A total of 597 records were obtained. 49.9% were male and 79% had central nervous system (CNS) abnormalities, with microcephaly (29%) and hydrocephalus (20%). Of the pregnant women with information, Zika was positive in 16%, toxoplasmosis 4%, and CMV and syphilis each in 2%. Of the newborns, abnormalities of CNS were detected with brain ultrasound (39%), magnetic resonance imaging (38%) and computerized axial tomography (35%). Conclusions: The INS generated an algorithm adjusted to international surveillance parameters that allows early identification of possible complications, so its full incorporation should serve to reduce disability and mortality. The evaluation of the application of this protocol due to the multiple sources of information makes it difficult to draw definitive conclusions given the context of the Colombian health system.
Kindhauser MK, Allen T, Frank V, Shankar R DC. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 2016;94:675-86. https://doi.org/10.2471/BLT.16.17108
Sampathkumar P, Sánchez JL. Zika virus in the Americas: a review for clinicians. Mayo Clinic Proceedings. 2016;91(4):514-21. https://doi.org/10.1016/j.mayocp.2016.02.017
Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects -reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981-7. https://doi.org/10.1056/NEJMsr1604338
Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis. 2016;16(6):653-60. https://doi.org/10.1016/S1473-3099(16)00095-5
Schuler-faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP. Possible association between Zika virus infection and microcephaly — Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(3):59-62. https://doi.org/10.15585/mmwr.mm6503e2
del Campo M, Feitosa IML, Ribeiro EM, Horovitz DDG, Pessoa ALS, França GVA, et al. The phenotypic spectrum of congenital Zika syndrome. Am J Med Gen, Part A. 2017;173(4):841-57. https://doi.org/10.1002/ajmg.a.38170
Levine D, Jani JC, Castro-Aragon L, Carnie M. How does imaging of congenital Zika compare with imaging of other TORCH infections? Radiology. 2017;285(3):744-61. https://doi.org/10.1148/radiol.2017171238
Ospina ML, Tong VT, González M, Valencia D, Mercado M, Gilboa SM, et al. Zika virus disease and pregnancy outcomes in Colombia. N Engl J Med. 2020;383(6):537-45. https://doi.org/10.1056/NEJMoa1911023
França GVA, Schuler-Faccini L, Oliveira WK, Henriques CMP, Carmo EH, Pedi VD, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet (London). 2016;388:891-7. https://doi.org/10.1016/ S0140-6736(16)30902-3
Núñez E VM, Beltrán-Luque B. Virus Zika en Centroamérica y sus complicaciones. Acta Med Peru. 2016;33(1):42-51. https://doi.org/10.35663/amp.2016.331.17
Coronell-Rodríguez W, Arteta-Acosta C, Suárez-Fuentes MA, Burgos-Rolon MC, Rubio-Sotomayor MT, Sarmiento-Gutiérrez M, et al. Infección por virus del Zika en el embarazo, impacto fetal y neonatal. Rev Chilena Infectol. 2016;33(6):665-73. https://doi.org/10.4067/S0716-10182016000600009
Zarante AM, Gracia G, Zarante I. Evaluación de factores de riesgo asociados con malformaciones congénitas en el programa de vigilancia epidemiológica de malformaciones congénitas (ECLAMC) en Bogotá entre 2001 y 2010. Univ Méd. 2010;53(1):11-25. https://doi.org/10.11144/Javeriana.umed53-1.efra
Zarante I, Sarmiento K, Mallarino C, Gracia G. Description of Bogotá birth defects surveillance and follow-up program. J Registry Manag. 2016;41(3):116-21.
Marinho F, Miranda de Araujo VE, Lopes D, Ferreira HL, Santanta MR, Reyes RC et al. Microcefalia no Brasil: prevalência e caracterização dos casos a partir do Sistema de Informações sobre Nascidos Vivos (Sinasc), 2000-2015. Epidemiol Serv Saúde. 2016;25(4):701-12. https://doi.org/10.5123/S1679-49742016000400004
Instituto Nacional de Salud. Informe de evento enfermedad por virus Zika, Colombia, 2017 [internet]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/ZIKA 2017.pdf
Puccioni-Sohler M, Roveroni N, Rosadas C, Ferry F, Peralta JM, Tanuri A, et al. Dengue infection in the nervous system: lessons learned for Zika and Chikungunya. Arq Neuropsiquiatr. 2017;75(2):123-6. http://doi.org/10.1590/0004-282X20160189
Chan JFW, Choi GKY, Yip CCY, Cheng VCC, Yuen KY. Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease. J Infect. 2016;72(5):507-24. https://doi.org/10.1016/j.jinf.2016.02.011
Brasil P, Pereira JP, Moreira ME, Ribeiro-Nogueira RM, Damasceno L WM. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2017;375(24):2321-34. https://doi.org/10.1056/NEJMoa1602412.Zika
Adhikari EH, Nelson DB, Johnson KA, Jacobs S, Rogers VL, Roberts SW, et al. Infant outcomes among women with Zika virus infection during pregnancy: results of a large prenatal Zika screening program. Am J Obstet Gynecol. 2017;216(3):292.e1-292.e8. https://doi.org/10.1016/j.ajog.2017.01.018
Cortés, JA. Gómez, JE. Silvac, PI. Arévalo, L. Arévalo, I. Alvarez, M. Beltráng, S. Corralesh, I. Mulleri, E. Ruiz, G. Gómez P. Guía de atención integral para la prevención, detección temprana y tratamiento de las complicaciones del embarazo, parto y puerperio: sección toxoplasmosis en el embarazo. Infectio. 2012;16(4):230-46. https://doi.org/10.22354/in.v21i2
Torgerson PR, Mastroiacovo P. The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ World Health Organ. 2013;91(7):501-8. https://doi.org/10.2471/BLT.12.111732
Salamanca-Rojas S, Barahona-López NM, Marín-Valcárcel A, Vidal-Camargo PA, Pedraza-Bernal AM, Ramírez-Rueda RY, et al. Seroprevalencia de anticuerpos IgG antirubéola y anticitomegalovirus en mujeres entre 16 y 40 años residentes en Tunja, Colombia. Rev Salud pública. 2018;20(4):479-83. https://doi.org/10.15446/rsap.v20n4.53677
Jin HD, Demmler-Harrison GJ, Coats DK, Paysse EA, Bhatt A, Edmond JC, et al. Long-term visual and ocular sequelae in patients with congenital cytomegalovirus infection. Pediatr Infect Dis J. 2017;36(9):877-82. https://doi.org/10.1097/INF.0000000000001599
Rosso F, Agudelo A, Isaza, Angela. Montoya J. Toxoplasmosis congénita: aspectos clínicos y epidemiológicos de la infección durante el embarazo. Colomb Med. 2007;38(3):316-37. https://doi.org/10.2510/COLOMB
Klase ZA, Khakhina S, Schneider ADB, Callahan M V., Glasspool-Malone J, Malone R. Zika fetal neuropathogenesis: etiology of a viral syndrome. PLoS Neglect Trop Dis. 2016;10(8):1-32. https://doi.org/10.1371/journal.pntd.0004877
Honein MA, Dawson AL, Petersen EE, Jones AM, Lee EH, Yazdy MM, et al. Birth defects among fetuses and infants of US women with evidence of possible zika virus infection during pregnancy. JAMA. 2017;317(1):59-68. https://doi.org/10.1001/jama.2016.19006
Hurtado-Villa P, Puerto AK, Victoria S, Gracia G, Guasmayán L, Arce P, et al. Raised frequency of microcephaly related to Zika virus infection in two birth defects surveillance systems in Bogotá and Cali, Colombia. Pediatr Infect Dis J. 2017;36(10). https://doi.org/1017-9. 10.1097/INF.0000000000001670
Hanzlik E, Gigante J. Microcephaly. Children. 2017;4(6):47. https://doi.org/10.3390/children4060047
Sierra M, Rumbo J, Salazar A, Sarmiento K, Suarez F, Zarante I. Perinatal mortality associated with congenital defects of the central nervous system in Colombia, 2005-2014. J Community Genet. 2019;10:515-21. https://doi.org/10.1007/s12687-019-00414-x
Jääskeläinen AJ, Korhonen EM, Huhtamo E, Lappalainen M. Validation of serological and molecular methods for diagnosis of zika virus infections. J Virol Methods. 2019;263:68-74. https://doi.org/10.1016/j.jviromet.2018.10.011

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Karen Solanyi Sarmiento Acuña, Lina María Ibañez-Correa, Gabriela Botta Méndez, Gloria Milena Gracia Charry, Jorge Alirio Holguín Ruiz, Ignacio Zarante Montoya, Paula Margarita Hurtado-Villa