Published Jan 30, 2023



PLUMX
Almetrics
 
Dimensions
 

Google Scholar
 
Search GoogleScholar


Luisana Molina Pimienta https://orcid.org/0000-0001-5505-9710

Juan Carmilo Salgado Sánchez https://orcid.org/0000-0002-5956-4834

Ingrid Hernández Cuello https://orcid.org/0000-0003-0254-9921

##plugins.themes.bootstrap3.article.details##

Abstract

ARID1A (AT-rich interaction domain 1A), is a subunit of the SWI/SNF complexes specifically mutated in ~20% of primary human cancers. Inactivation of ARID1A through somatic mutations and other epigenetic mechanisms results in loss of gatekeeper and caretaker functions in cells, promoting tumor initiation. A correlation has been documented between loss-of-function mutations in ARID1A and the presence of activating mutations in PIK3CA, loss of PTEN expression and loss of p53 function. ARID1A mutations were present in 2.5% of all breast cancers. However, the percentage of breast cancer with ARID1A mutations increases in metastatic 12% or inflammatory 10% cancers. Loss of ARID1A function in breast cancer is most frequently acquired post-treatment and is associated with resistance to hormonal treatment and chemotherapeutic agents. In addition, it leads to deficient repair of double-strand breaks, sensitizing cells to PARP inhibitors. Finally, alterations in ARID1A could be a biomarker of response to checkpoint inhibitors.

Keywords

ARID1A, breast cancer, SWI/SNF complex, therapeutic targetsARID1A, cáncer de mama, complejo SWI/SNF, agentes terapéuticos

References
1. Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol [internet]. 2010 Jun;102(2-3):122-8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0079610710000295
2. Harrod A, Lane KA, Downs JA. The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks. DNA Repair (Amst) [internet]. 2020 Sep;93:102919. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1568786420301671
3. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet [internet]. 2013 Jun 5;45(6):592-601. Disponible en: http://www.nature.com/articles/ng.2628
4. Wilsker D, Probst L, Wain H, Maltais L, Tucker P, Moran E. Nomenclature of the ARID family of DNA-binding proteins. Genomics [internet]. 2005 Aug;86(2):242-51. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0888754305000923
5. Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, et al. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res [internet]. 2014 May 1;74(9):2465-75. Disponible en: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-13-3608
6. Flores-Alcantar A, Gonzalez-Sandoval A, Escalante-Alcalde D, Lomelí H. Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell Tissue Res. 2011 Jul 7;345(1):137-48. https://doi.org/10.1007/s00441-011-1182-x
7. Wu JN, Roberts CWM. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 2013 Jan;3(1):35-43. https://doi.org/10.1158/2159-8290.CD-12-0361
8. Kinzler KW, Vogelstein B. Cancer-susceptibility genes: gatekeepers and caretakers. Nature [internet]. 1997 Apr 24;386(6627):761, 763. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9126728
9. Wu R-C, Wang T-L, Shih I-M. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther [internet]. 2014 Jun 11;15(6):655-64. Disponible en: http://www.tandfonline.com/doi/abs/10.4161/cbt.28411
10. Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer [internet]. 2011 Jul 9;11(7):481-92. Disponible en: https://www.nature.com/articles/nrc3068
11. Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One. 2013 Jan 23;8(1):e55119. https://doi.org/10.1371/journal.pone.0055119
12. Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011 Jul;224(3):328-33. https://doi.org/10.1002/path.2911
13. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A Mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010 Oct 14;363(16):1532-43. https://doi.org/10.1056/NEJMoa1008433
14. Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012 Jan 23;33(1):100-3. https://doi.org/10.1002/humu.21633
15. St. Pierre R, Kadoch C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr Opin Genet Dev [internet]. 2017 Feb;42:56-67. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959437X17300278
16. Cornen S, Adelaide J, Bertucci F, Finetti P, Guille A, Birnbaum DJ, et al. Mutations and deletions of ARID1A in breast tumors. Oncogene [internet]. 2012 Sep 20;31(38):4255-6. Disponible en: https://www.nature.com/articles/onc2011598
17. World Health Organization. World cancer day 2021: spotlight on IARC research related to breast cancer [internet]. [Citado 2021 dic 12]. Disponible en: https://www.iarc.who.int/featured-news/world-cancer-day-2021/
18. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol [internet]. 2020 Feb;60:14-27. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1044579X1930063X
19. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell [internet]. 2017 feb;31(2):181-93. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1535610817300016
20. Yates LR, Knappskog S, Wedge D, Farmery JHR, González S, Martincorena I, et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell [internet]. 2017 Aug;32(2):169-184.e7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1535610817302970
21. Cheng X, Zhao J-X, Dong F, Cao X-C. ARID1A mutation in metastatic breast cancer: a potential therapeutic target. Front Oncol. 2021 Nov 4;11. https://doi.org/10.3389/fonc.2021.759577/full
22. Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev [internet]. 2003 Apr;13(2):136-42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959437X03000224
23. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, et al. ARID1A Deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 2015 Jul;5(7):752-67. https://doi.org/10.1158/2159-8290.CD-14-0849
24. Simmons DJ, Parvin C, Smith KC, France P, Kazarian L. Effect of rotopositioning on the growth and maturation of mandibular bone in immobilized rhesus monkeys. Aviat Space Environ Med [internet]. 1986 Feb;57(2):157-61. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3954704
25. Samartzis EP, Gutsche K, Dedes KJ, Fink D, Stucki M, Imesch P. Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget. 2014 Jul 30;5(14):5295-303. https://doi.org/10.18632/oncotarget.2092
26. Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Arch. 2012 Jan 26;460(1):77-87. https://doi.org/10.1007/s00428-011-1169-8
27. Suryo Rahmanto Y, Shen W, Shi X, Chen X, Yu Y, Yu Z-C, et al. Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat Commun [internet]. 2020 Dec 1;11(1):2717. Disponible en: http://www.nature.com/articles/s41467-020-16416-0
28. Allo G, Bernardini MQ, Wu R-C, Shih I-M, Kalloger S, Pollett A, et al. ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol [internet]. 2014 Feb 26;27(2):255-61. Disponible en: http://www.nature.com/articles/modpathol2013144
29. Zhang X, Zhang Y, Yang Y, Niu M, Sun S, Ji H, et al. Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. Cancer Epidemiol [internet]. 2012 Jun;36(3):288-93. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1877782111001196
30. Mamo A, Cavallone L, Tuzmen S, Chabot C, Ferrario C, Hassan S, et al. An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene [internet]. 2012 Apr 19;31(16):2090-100. Disponible en: https://www.nature.com/articles/onc2011386
31. Zhang X, Sun Q, Shan M, Niu M, Liu T, Xia B, et al. Promoter hypermethylation of ARID1A gene is responsible for its low mRNA expression in many invasive breast cancers. PLoS One. 2013;8(1):e53931. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23349767
32. Takao C, Morikawa A, Ohkubo H, Kito Y, Saigo C, Sakuratani T. Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer. Cancer. 2017 Jan 1;8(1):1-8. https://doi.org/10.7150/jca.16602
33. Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet [internet]. 2013 Dec 3;45(12):1439-45. Disponible en: http://www.nature.com/articles/ng.2822
34. Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-wide estrogen receptor activity in breast cancer. Endocrinology. 2021 Feb 1;162(2). https://doi.org/10.1210/endocr/bqaa224/6025411
35. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet [internet]. 2020 Feb 13;52(2):198-207. Disponible en: http://www.nature.com/articles/s41588-019-0554-0
36. Nagarajan S, Rao S V., Sutton J, Cheeseman D, Dunn S, Papachristou EK, et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet [internet]. 2020 Feb 1;52(2):187-97. Disponible en: https://www.nature.com/articles/s41588-019-0541-5
37. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet [internet]. 2017 Jun;389(10087):2430-42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0140673616324540
38. Lin Y-F, Tseng I-J, Kuo C-J, Lin H-Y, Chiu I-J, Chiu H-W. High-level expression of ARID1A predicts a favourable outcome in triple-negative breast cancer patients receiving paclitaxel-based chemotherapy. J Cell Mol Med [internet]. 2018;22(4):2458-68. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29392887
39. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, et al. ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discov [internet]. 2015 Jul 1;5(7):752-67. Disponible en: https://aacrjournals.org/cancerdiscovery/article/5/7/752/5179/ARID1A-Deficiency-Impairs-the-DNA-Damage
40. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature [internet]. 2013 May 22;497(7451):624-7. Disponible en: http://www.nature.com/articles/nature12146
41. Hu H-M, Zhao X, Kaushik S, Robillard L, Barthelet A, Lin KK, et al. A Quantitative Chemotherapy Genetic Interaction Map reveals factors associated with PARP inhibitor resistance. Cell Rep [internet]. 2018 Apr;23(3):918-29. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211124718304546
42. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet [internet]. 2006 Aug;7(8):606-19. Disponible en: http://www.nature.com/articles/nrg1879
43. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, et al. Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA -altered solid tumors: results from the first-in-human study. J Clin Oncol [internet]. 2018 May 1;36(13):1291-9. Disponible en: https://doi.org/10.1200/JCO.2017.72.7107
44. Juric D, Rugo HS, Reising A et. al. Alpelisib (ALT) + fulvestrant (FUL) in patients (pts) with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC): Biomarker (BM) analyses by next-generation sequencing (NGS) from the SOLAR 1 study. J Clin Oncol. 2022;40(6 supl):1006. https://doi.org/10.1200/JCO.2022.40.16_suppl.1006
45. Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol [internet]. 2017 Sep;29(5):375-81. Disponible en: https://journals.lww.com/00001622-201709000-00011
46. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov A V, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med [internet]. 2015 Mar 16;21(3):231-8. Disponible en: http://www.nature.com/articles/nm.3799
47. Xu S, Tang C. The Role of ARID1A in tumors: tumor initiation or tumor suppression? Front Oncol [internet]. 2021;11:745187. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/34671561
48. Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol [internet]. 2017 Aug 24;19(8):962-73. Disponible en: http://www.nature.com/articles/ncb3582
49. Liu Y, Li Y, Liu S, Adeegbe DO, Christensen CL, Quinn MM, et al. NK Cells Mediate synergistic antitumor effects of combined inhibition of HDAC6 and BET in a SCLC preclinical model. Cancer Res [internet]. 2018 Jul 1;78(13):3709-17. Disponible en: https://aacrjournals.org/cancerres/article/78/13/3709/625125/NK-Cells-Mediate-Synergistic-Antitumor-Effects-of
50. Fukumoto T, Fatkhutdinov N, Zundell JA, Tcyganov EN, Nacarelli T, Karakashev S, et al. HDAC6 inhibition synergizes with anti-PD-L1 therapy in ARID1A-inactivated ovarian cancer. Cancer Res [internet]. 2019 Nov 1;79(21):5482-9. Disponible en: https://aacrjournals.org/cancerres/article/79/21/5482/657614/HDAC6-Inhibition-Synergizes-with-Anti-PD-L1
51. Okamura R, Kato S, Lee S, Jimenez RE, Sicklick JK, Kurzrock R. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J Immunother Cancer. 2020 Feb;8(1):e000438. https://doi.org//10.1136/jitc-2019-000438
52. Jiang T, Chen X, Su C, Ren S, Zhou C. Pan-cancer analysis of ARID1A alterations as biomarkers for immunotherapy outcomes. J Cancer [internet]. 2020;11(4):776-80. Disponible en: http://www.jcancer.org/v11p0776.htm
53. Wang L, Qu J, Zhou N, Hou H, Jiang M, Zhang X. Effect and biomarker of immune checkpoint blockade therapy for ARID1A deficiency cancers. Biomed Pharmacother [internet]. 2020 Oct;130:110626. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0753332220308192
How to Cite
Molina Pimienta, L., Salgado Sánchez, J. C., & Hernández Cuello, I. (2023). Treatment implications on breast cancer patients and alterations in ARID1A. Universitas Medica, 64(1). https://doi.org/10.11144/Javeriana.umed64-1.tpcm
Section
Short Reviews

Most read articles by the same author(s)